Читаем Feynmann 6a полностью

Вас может удивить — к чему все это обсуждение бесконечных сетей, если на самом деле они невозможны? Но вся хитрость в том и заключается, что те же характеристики вы обнаружите и в конечной сети, если заключите ее импедансом, совпадающим с характеристическим импедансом z0. Практически, конечно, не­возможно точно воспроизвести характеристический импеданс несколькими простыми элементами, такими, как R, L и С. Но в некоторой полосе частот нередко этого можно добиться в хоро­шем приближении. Этим способом можно сделать конечную фильтрующую сеть со свойствами, очень близкими к тем, кото­рые проявляются в бесконечном фильтре. Скажем, лестница L—С будет во многом вести себя так, как было описано, если на конце ее помещено чистое сопротивление RL/C.

А если в нашей лестнице L—С мы поменяем местами L

и С, чтобы получилась лестница, показанная на фиг. 22.23,а, то получится фильтр, который пропускает высокие частоты и отбрасывает низкие.



Фиг. 22.22. Фактор распростра­нения одного звена лестницы.



Фиг. 22.23. Высокочастотный фильтр (а) и его фактор распро­странения как функция 1/w

(б).

Пользуясь уже полученными результатами, легко понять, что происходит в этой сети. Вы уже, наверно, за­метили, что всегда, когда L заменяется на С и наоборот, то и in заменяется на 1/iw и наоборот. Значит, все, что происходило раньше с w, теперь будет происходить с 1/w. В частности, можно узнать, как меняется а с частотой, взяв фиг. 22.22 и повсюду вместо со написав 1/w (фиг. 22.23,6).

У описанных фильтров высоких и низких частот есть много­численные технические приложения. Фильтр L—С низких частот часто используется как «сглаживающий» фильтр в цепях по­стоянного тока. Если нам нужно получить постоянный ток от источника переменного тока, мы включаем выпрямитель, который позволяет течь току только в одну сторону. Из выпрямителя выходит пульсирующий ток, график которого выглядит как функция V(t), показанная на фиг. 22.24 Постоянство такого тока — никудышное: он шатается вверх и вниз, а нам нужен по­стоянный ток, чистенький, гладенький, как от батареи аккумуляторов. Этого можно добиться, включив фильтр низких частот между выпрямителем и нагрузкой.

Из гл. 50 (вып. 4) мы уже знаем, что временная функция на фиг. 22.24 может быть представлена в виде наложения постоянного напряжения на синусную волну плюс синусную волну большей частоты плюс еще более высокочастотную синусоиду и т. д., т. е. как ряд Фурье.


Фиг. 22.24. Напряжение на вы­ходе всеволнового выпрямителя.

Если наш фильтр — линейный (т. е. если, как мы предполагали, L и С при изменении токов или напряже­ний не меняются), то то, что выходит из фильтра, представляет собой тоже наложение выходов от каждой компоненты на входе. Если устроить так, чтобы граничная частота w0 нашего фильтра была значительно ниже наинизшей из частот функции V(t), то постоянный ток (у которого w=0) прекрасно пройдет через фильтр, а амплитуда первой гармоники будет крепко срезана; ну, а амплитуды высших гармоник — тем более. Значит, на выходе можно получить какую угодно гладкость, смотря по тому, на сколько звеньев фильтра у вас хватит денег.

Высокочастотный фильтр нужен тогда, когда необходимо срезать некоторые низкие частоты. Например, в граммофонном усилителе высокочастотный фильтр можно использовать, чтобы музыка не искажалась: он задержит низкочастотное громыхание моторчика и диска.

Можно еще делать и «полосовые» фильтры, отбрасывающие частоты ниже некоторой частоты w1 и частоты выше некоторой другой частоты w2 (большей w1), но зато пропускающие все частоты от w1 до w2. Это можно сделать просто, совместив высо­кочастотный и низкочастотный фильтры, но обычно делают лестничную схему, в которой импедансы z1 и z2 имеют более сложный вид — они сами суть комбинации L и С. У такого поло­сового фильтра постоянная распространения может выглядеть так, как на фиг. 22.25,а. Его можно использовать, скажем, что­бы отделять сигналы, которые занимают только некоторый ин­тервал частот, например каждый из каналов телефонной связи в высокочастотном телефонном кабеле или модулированную несу­щую частоту при радиопередаче.

Перейти на страницу:

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное
Битва в ионосфере
Битва в ионосфере

После Второй мировой войны знаменитый англичанин Уинстон Черчилль сказал, что радиолокация стала одним из величайших достижений человечества XX века. Открытие советским ученым Николаем Кабановым эффекта рассеяния земной поверхностью отражённых ионосферой коротких радиоволн, сделанное в 1947 году, позволило существенно расширить границы применения радиолокации. Он первым в мире показал потенциальную возможность ведения загоризонтной радиолокации, позволяющей обнаруживать цели на дальностях до нескольких тысяч километров. Однако долгие годы реализация научного открытия Кабанова оставалась неразрешимой технической задачей. Первыми дерзнули ее решить в начале 60-х годов минувшего столетия советские ученые Ефим Штырен, Василий Шамшин, Эфир Шустов и другие конструкторы. Создать же реальную боевую систему загоризонтной радиолокации, которая была способна обнаруживать старты баллистических ракет с ядерным оружием с территории США, удалось только в 70-х годах XX века коллективу учёных под руководством главного конструктора Франца Александровича Кузьминского. Однако из-за интриг в Минрадиопроме он незаслуженно был отстранён от работы. Ему не удалось доработать боевую систему ЗГРЛС. В начале 90-х годов разработчики и заказчики из Минобороны СССР-РФ подверглись необоснованным нападкам в советской, а затем в российской прессе. Они были обвинены в волюнтаризме и разбазаривании огромных бюджетных средств. Военный журналист подполковник Александр Бабакин еще в 1991 году в одной из публикаций опроверг эти обвинения. «Ветеран боевых действий», Лауреат премии союза журналистов Москвы, полковник запаса Александр Бабакин 18 лет вел расследование трагедии и триумфа отечественной загоризонтной локации. В документальной книге-расследовании даются ответы на многие вопросы противостояния между СССР-РФ и США в области создания систем предупреждения о ракетном нападении.

Александр Бабакин

История / Физика / Технические науки / Образование и наука