Читаем Feynmann 6a полностью

Пусть у нас имеется катушка, наподобие катушки самоин­дукции, но только витков у нее немного и на магнитное поле ее собственного тока можно внимания не обращать. Эта катуш­ка, однако, находится в переменном магнитном поле, подобном тому, какое создается вращающимся магнитом (фиг. 22.5). (Мы уже видели ранее, что такое вращающееся магнитное поле мож­но также создать с помощью подходящей совокупности катушек с переменными токами.) Сделаем снова несколько упрощающих допущений. Это все те же допущения, которые мы делали, гово­ря об индуктивности. В частности, мы предполагаем, что меняю­щееся магнитное поле ограничено лишь небольшой областью поблизости от катушки и за пределами генератора, в простран­стве

между клеммами, оно не чувствуется.


Фиг. 22.5. Генератор, состоя­щий из закрепленной катушки и вращающегося магнитного поля.


Фиг. 22.6. Обозначение идеального генератора.

Повторяя опять в точности тот же анализ, что и для индук­тивности, рассмотрим контурный интеграл от Е вдоль замкну­той петли, которая начинается на зажиме а, проходит по ка­тушке до зажима b и возвращается к началу по пространству между зажимами. Снова заключаем, что разность потенциалов между зажимами а и b равна всему интегралу от Е вдоль петли:



Этот контурный интеграл равен э.д.с. в цепи, и поэтому разность потенциалов V между выводами генератора тоже равна скорости изменения магнитного потока сквозь катушку:

(22.11)

Предполагается далее, что у идеального генератора магнитный поток через катушку определяется внешними условиями (таки­ми, как угловая скорость вращающегося магнитного поля) и что на него никак не влияют токи, текущие через генератор. Таким образом, генератор (по крайней мере рассматриваемый нами идеальный) — это не импеданс. Разность потенциалов на его зажимах определяется произвольно задаваемой э.д.с. e(t). Такой идеальный генератор представляют символом, по­казанным на фиг. 22.6. Маленькая стрелка дает направление по­ложительной э.д.с. Положительная э.д.с. в генераторе, изобра­женном на фиг. 22.6, создает напряжение V=e

с более высоким потенциалом на зажиме а.

Можно сделать генератор и по-другому. Внутри он будет уст­роен совершенно иначе, но снаружи, на зажимах, он ничем не будет отличаться от только что описанного. Представим катуш­ку, которая вращается в неподвижном магнитном поле (фиг.22.7).

Мы изобразили магнитную палочку, чтобы показать наличие магнитного поля, но его можно, конечно, заменить любым дру­гим источником постоянного магнитного поля, скажем добавоч­ной катушкой, по которой течет постоянный ток. Как показано на рисунке, вращающаяся катушка связана с внешним миром скользящими контактами, или «кольцами». Нас опять интересу­ет разность потенциалов, которая появляется между клеммами а и b, т. е. интеграл от электрического поля между а и b по пути снаружи генератора.

Теперь в этой системе уже нет изменяющихся магнитных по­лей и на первый взгляд кажется удивительным, откуда на зажи­мах генератора берется напряжение. Действительно, ведь нигде же внутри генератора нет никаких электрических полей. Мы, как обычно, предполагаем для наших идеальных элементов, что внутри них провода сделаны из идеально проводящего материа­ла; а, как уже неоднократно повторялось, электрическое поле внутри идеального проводника равно нулю. Но это не всегда верно. Это неверно тогда, когда проводник движется в магнитном поле. Правильное утверждение таково: общая сила,

действую­щая на произвольный заряд внутри идеального проводника, должна быть равна нулю. Иначе в нем возник бы бесконечный ток свободных зарядов. Так что надо брать сумму электрическо­го поля Е и векторного произведения скорости проводника v на магнитное поле В; это есть полная сила, действующая на еди­ничный заряд, и вот она-то всегда равна нулю:

F=E+vXB=0 (в идеальном проводнике). (22.12)

А наше прежнее утверждение о том, что внутри идеальных про­водников электрических полей не бывает, верно лишь тогда, когда скорость проводника v равна нулю; в противном случае справедливо выражение (22.12).

Вернемся к нашему генератору, показанному на фиг. 22.7. Теперь мы видим, что контурный интеграл от электрического поля Е между зажимами а и b по проводящим путям генерато­ра должен быть равен контурному интегралу от vXB по тому же пути;



Фиг. 22.7. Генератор, состоящий из катушки, вращающейся в неподвиж­ном магнитном поле.


Перейти на страницу:

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное
Битва в ионосфере
Битва в ионосфере

После Второй мировой войны знаменитый англичанин Уинстон Черчилль сказал, что радиолокация стала одним из величайших достижений человечества XX века. Открытие советским ученым Николаем Кабановым эффекта рассеяния земной поверхностью отражённых ионосферой коротких радиоволн, сделанное в 1947 году, позволило существенно расширить границы применения радиолокации. Он первым в мире показал потенциальную возможность ведения загоризонтной радиолокации, позволяющей обнаруживать цели на дальностях до нескольких тысяч километров. Однако долгие годы реализация научного открытия Кабанова оставалась неразрешимой технической задачей. Первыми дерзнули ее решить в начале 60-х годов минувшего столетия советские ученые Ефим Штырен, Василий Шамшин, Эфир Шустов и другие конструкторы. Создать же реальную боевую систему загоризонтной радиолокации, которая была способна обнаруживать старты баллистических ракет с ядерным оружием с территории США, удалось только в 70-х годах XX века коллективу учёных под руководством главного конструктора Франца Александровича Кузьминского. Однако из-за интриг в Минрадиопроме он незаслуженно был отстранён от работы. Ему не удалось доработать боевую систему ЗГРЛС. В начале 90-х годов разработчики и заказчики из Минобороны СССР-РФ подверглись необоснованным нападкам в советской, а затем в российской прессе. Они были обвинены в волюнтаризме и разбазаривании огромных бюджетных средств. Военный журналист подполковник Александр Бабакин еще в 1991 году в одной из публикаций опроверг эти обвинения. «Ветеран боевых действий», Лауреат премии союза журналистов Москвы, полковник запаса Александр Бабакин 18 лет вел расследование трагедии и триумфа отечественной загоризонтной локации. В документальной книге-расследовании даются ответы на многие вопросы противостояния между СССР-РФ и США в области создания систем предупреждения о ракетном нападении.

Александр Бабакин

История / Физика / Технические науки / Образование и наука