Теперь мы можем отшлифовать нашу теорию и превратить ее во всеобщий закон реальных газов. Молекулы упруги, свободны, малы…, но не бесконечно малы. Если сами они занимают некий объем, то пространство, доступное для движения, уже не будет совпадать с наблюдаемым объемом V
, а несколько меньше V — b, где Ь — поправка, учитывающая размеры молекул[229]. Кроме того, молекулы не свободны от влияния друг на друга. При сближении они притягиваются; так, мы знаем, происходит в жидкостях. При больших сжатиях молекулы «сдерживают» друг друга, уменьшая давление на стенки сосуда. Правдоподобные рассуждения показывают, что наблюдаемое давление Р не просто RT/V, а RT/V — a/V2, где а — постоянная[230].Закон PV
= RT превращается в(P
+ a/V2)∙(V — b) = RTЭто уточненный газовый закон, называемый законом Ван дер Ваальса. (Соответствующие графики приведены на фиг. 110.)
Новая формула достаточно хорошо описывает поведение реальных газов, предсказывая отклонения от закона Бойля в обширной области давлений вплоть до тысяч атмосфер и даже ниже критической температуры. Она сводится к старой записи, когда V
велико, например для воздуха при атмосферном давлении или ниже. (Хороший пример принципа соответствия Бора: новая теория должна сводиться к старой в пределе, когда новые условия оказываются несущественными.)Это хорошая теория. Добавление реальных предположений приводит к более общим выводам. Мы можем сверить данные опыта с новым законом и найти для каждого газа величины а
и Ь. Затем можно воспользоваться этим законом и привести показания газового термометра к идеальной газовой шкале. Величина Ь позволяет оценить диаметр молекул. А когда газ превращается в жидкость, поправка a/V2 намного превышает обычное давление и возникает поверхностное натяжение, удерживающее жидкость в капле.
Разумное применение теории
Используя манометр Мак-Леода, мы доверяем закону Бойля. Но откуда же известно, что закон Бойля справедлив при очень низком давлении, вдали от той области, где его можно экспериментально проверить? Чтобы гарантировать это, нужно измерять Р
и V вплоть до этих давлений. Но как измерить Р? Ведь не барометром же Мак-Леода! Для этого мы обращаемся к кинетической теории газов и спрашиваем, можно ли доверять закону Бойля?Обычно экстраполировать
теорию очень рискованно, но здесь теория дает мудрый ответ: «Если и существует область, где можно пренебречь размером молекул и их притяжением и где должен быть справедлив простой закон, то где, как не при очень низких давлениях можно положиться на закон Бойля». Это необычный случай, когда теория сама гарантирует свою экстраполяцию с с большой точностью.
Можно ли сжать газ до жидкости?
Как делают жидкий воздух? Не просто сжатием. Даже если мы сожмем газ так, что он будет столь же плотным, что и жидкость, он по-прежнему будет занимать весь сосуд. Кажется, что его молекулы неспособны собраться в жидкость. Однако если мы охладим газ ниже критической температуры
, то при сжатии он сможет превратиться в жидкость. Если же его охладить, а для сжижения сжать недостаточно, он по-прежнему будет вести себя как газ, который называют паром. Пар можно превратить в жидкость простым сжатием, но, чтобы превратить в жидкость истинный газ, следует сперва охладить его ниже критической температуры и сжать (продолжая при конденсации отбирать тепло). При наличии достаточного места любая жидкость превращается в пар.Таким образом, каждое вещество характеризуется определенной критической температурой, выше которой оно — несжижаемый газ
, а ниже — либо пар, либо пар + жидкость, либо жидкость в зависимости от давления. Комнатная температура для большинства газов значительно выше их критической температуры, а для всех жидкостей, — разумеется, ниже ее. Азот — это газ, водяной пар — это пар, ртуть — это жидкость, а свинец — это твердое тело. На Солнце все они были бы газами, на Нептуне — твердыми телами.Критическая температура воздуха равна —140 °C, гелия — всего лишь несколько градусов выше абсолютного нуля, воды — около +365 °C, углекислого газа 31 °C. В обычные нежаркие дни огнетушитель, скажем, на 3
/4 заполнен жидким СО2, над которым находится пар[231]. В очень жаркие дни граница жидкости исчезает и вся она превращается в пар. Это превращение можно наблюдать в стеклянной трубке (фиг. 108). При повышении температуры жидкость сильно расширяется, становясь менее плотной, тогда как плотность пара растет. Затем граница исчезает, но появляется вновь при охлаждении после внезапного «проливного дождя» капель жидкости. Хотя это и опасный опыт, но происходящие в нем изменения восхитительны.Мы еще вернемся к проблеме критической температуры после того, как расскажем о молекулярной картине испарения.
Фиг. 108.
Критическая температура.Стеклянная трубка с жидкостью и паром нагревается.
Закон Бойля
и СО2