Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Для объяснения опыта Майкельсона такие крупнейшие физики, как Джозеф Лармор (1857–1942) и Гендрик Антон Лоренц (1853–1928), применили гипотезу сокращения тел в направлении их движения. Однако логические противоречия и искусственность объяснения многих явлений, касающихся электродинамики, продолжали оставлять чувство неудовлетворенности.

Разрубить гордиев узел всех противоречий выпало на долю величайшего физика нашего столетия Альберта Эйнштейна (1879–1955).



АЛЬБЕРТ ЭЙНШТЕЙН (1879–1955) — гениальный ученый, творец теории относительности, революционизировавшей физическое мышление. В 1905 г. Эйнштейн публикует труд, посвященный специальной теории относительности. В 1907 г. им получена формула, связывающая энергию и массу тела. В 1915 г. Эйнштейн публикует общую теорию относительности. Из теории следовали новые законы тяготения и выводы о кривизне пространства.

Теорией относительности не исчерпывается вклад Эйнштейна в физику. Из работы Планка он делает вывод о существовании частицы света — фотона и показывает, каким образом можно с этих позиций объяснить ряд фундаментальных явлений, в том числе и фотоэффект.


Отправной точкой рассуждений Эйнштейна служил принцип относительности. Мало кто сомневался после Галилея, что в отношении механических движений все инерциальные системы равноправны (вернитесь, пожалуйста, к 1-й книге и освежите в памяти все, что было сказано по этому поводу). Получается как-то странно, да и несовершенно с эстетических позиций: для механических движений равноправие, а для электромагнитных его нет.

Откажемся от этой «некрасивой» точки зрения и примем, что принцип относительности верен для всех явлений.

А теперь задумаемся над результатом опыта Майкельсона. Попытки объяснить результат этого эксперимента, рассматривая распространение света в «эфире» наподобие распространения звука в воздухе, также не удовлетворяют Эйнштейна. Он чувствует, что «что-то» здесь не то. Собственно говоря, почему мы обязаны «подравнивать» свет и звук? Из-за того, что и тот и другой способны дифрагировать? Не такой уж сильный довод. Откажемся и от этой точки зрения и примем следующий постулат (на первый взгляд кажущийся диким): скорость света в вакууме одинакова с точки зрения всех наблюдателей, движущихся в разных инерциальных системах. В каком бы направлении ни бежала электромагнитная волна, какое бы тело ни послужило ее источником, земляне и инопланетяне, проживающие в другой галактике (как хочется многим фантазерам верить в их существование), измерят одну и ту же скорость — 299 792 км/с.

Вдоль прямолинейного участка железнодорожного пути катится вагон с неизменной скоростью v. Параллельно дороге идет шоссе. По нему в том же самом направлении, мчится мотоциклист. Инспектор ГАИ, пост которого расположен вблизи железной дороги, свистит вслед нарушителю — он промчался мимо него со скоростью u

, куда большей, чем дозволено. Маленький радар, которыми теперь снабжены многие инспекторы, показывает 85 км/ч. Машинист поглядывает на мотоциклиста, который быстро нагоняет, а затем и обгоняет поезд. И этому наблюдателю нетрудно измерить скорость мотоциклиста. Она будет равна u' = 35 км/ч. Мне не надо доказывать читателю, что скорость поезда равна 50 км/ч. Справедлив закон сложения скоростей:

u = v + u

'

И вот это, казалось бы сверхочевидное правило не подходит для светового луча. Фотоны движутся с одной и той же скоростью по отношению к двум наблюдателям, находящимся в разных инерциальных системах.

Гений Эйнштейна состоял в том, что он отказался от этого очевидного вывода не только для света, но желая сохранить единый подход ко всем физическим явлениям, как электромагнитным, так и механическим, взял на себя смелость отказаться от закона сложения скоростей для всех тел.

Разумеется, с подобных позиций опыт Майкельсона и объяснять нечего. Раз скорость света универсальна, значит, она будет одинаковой во всех направлениях — и вдоль земной орбиты, и поперек пути обращения Земли вокруг нашего светила.

Из сформулированных принципов сразу же следует что скорость света является максимальной скоростью[1].

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука