Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Действительно, если скорость света не добавляется к скорости движения источника, значит, обогнать свет невозможно. Эйнштейн в своих воспоминаниях пишет, что еще в 1896 г. у него возник вопрос: «Если бы можно было погнаться за световой волной со скоростью света, то имели бы мы перед собой не зависящие от времени волновое поле? Такое все-таки кажется невозможным».

Итак, ни одно тело, ни одна частица не могут двигаться со скоростью большей, чем скорость света. Вдумайтесь, пожалуйста, в это утверждение. Ввиду его кажущейся парадоксальности повторим еще раз. Если на Земле или иной планете из одного места в другое отправляется в путешествие электромагнитная волна, то скорость распространения этой волны, измеренная земным наблюдателем и наблюдателем, пролетающим над Землей в ракете, движущейся с фантастической скоростью, будет одной и той же. Это же утверждение справедливо и для всякой частицы, движущейся со скоростью, равной скорости электромагнитных волн.

Свет — не исключение в теории Эйнштейна. Ну, а как происходит дело, когда скорость движущегося тела меньше скорости света? Очевидно, что и в этом случае простой принцип сложения скоростей, которым мы всегда так уверенно пользуемся, несправедлив. Но отклонение от обычного правила сложения скоростей начнет чувствоваться лишь тогда, когда скорость тела будет очень и очень велика

Релятивистская механика — таково название механики быстро движущихся тел — приводит к следующему правилу сложения скоростей:


Прикиньте, какими должны быть значения v и

v', чтобы понадобились поправки к простому правилу сложения скоростей.

Как Обстоит дело, к примеру, с космическими полетами? Работает ли обычное правило сложения скоростей, когда речь идет о движениях со скоростью в десятки километров в секунду?

Как известно, весьма целесообразным является запуск «вторичной» ракеты с какого-либо космического корабля-ракетоносителя. Возможно, именно таким способом будут отправляться ракеты к окраинам Солнечной системы. Обозначим через v скорость космического корабля по отношению к Земле, через v' — скорость запущенной с него ракеты по отношению к космическому кораблю. Положим обе скорости v и v' равными 10 км/с. Подсчитаем теперь по точной формуле сложения скоростей, чему будет равна скорость ракеты по отношению к Земле. Тогда к единице в знаменателе надо добавлять дробь 102

/(9∙1010) ~= 10-9. Поправка совершенно ничтожна, т. е. работает классическое правило сложения скоростей.

Какое же тогда практическое значение имеет релятивистская механика? Дойдем до ответа и на этот вопрос. А пока что потянем следствия из сформулированных гипотез. Поскольку приходится распроститься с принципом сложения скоростей, то мы уже готовы к тому, что придется внести существенные коррективы и в другие формулы механики.

Как подчеркивалось выше, решающую роль в становлении теории относительности сыграл опыт Майкельсона — опыт, которым было доказано, что скорость света вдоль и поперек движения Земли по солнечной орбите одна и та же.

Не будем рассматривать ход лучей в интерферометре Майкельсона. Ограничимся обсуждением более простых событий. Где-то на-Земле создана простенькая установка. На столбе на высоте l от земной поверхности установлен лазер. Его тончайший луч идет вдоль земного радиуса, отражается от положенного на земную поверхность зеркала, возвращается обратно и принимается фотоэлементом, который инженеры умудрились поместить таким образом, что мы вправе считать, что источник и приемник света находятся в одной точке.

На рис. 4.1 она обозначена буквой S.



При помощи ультрасовершенного секундомера можно зафиксировать два мгновения: первое, когда свет отправился в путешествие, и второе, когда он пришел к фотоэлементу. Два наблюдателя следят за этим явлением. Один находится тут же рядом с выдуманной нами установкой, а второго художник поместил на далекую звезду. Оба измеряют интервал времени τ между двумя событиями: уходом и возвращением света в точку S. Первый наблюдатель чертит картинку хода луча, проще которой и выдумать нельзя. Он полагает, что пути луча туда и обратно полностью совпадают. В справедливости своего рассуждения он убеждается с помощью равенства τ = 2∙l/с

.

Звездный наблюдатель следит за вспышкой отправления света и за его приходом к фотоэлементу. Измеренный им промежуток времени равен τ. И он, чтобы проверить, всё ли правильно, строит картинку хода луча.

Но для него положения точки S в момент включения секундомера и в момент, когда он заметил реакцию фотоэлемента, не совпадают. Поэтому он строит другую картинку хода луча. Скорость Земли по отношению к себе звездный наблюдатель знает. Так что его чертежик изображает собой равносторонний треугольник, основание которого равно vτ, а высота равняется l. С помощью теоремы Пифагора звездный наблюдатель устанавливаем что путь, пройденный световым лучом, равен  Этот путь равен cτ — ведь скорость света одинакова для всех наблюдателей. Раз так, то промежуток времени между двумя мгновениями будет равен


Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука