Читаем Флатландия. Сферландия полностью

Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.

Дионис Бюргер , Эдвин Эбботт

Математика / Научная Фантастика18+

Предисловие


Многомерные пространства давно утратили тот ореол таинственности, которым они были некогда окутаны. Идеи и методы многомерной геометрии (причем не только евклидовой, но и неевклидовой) находят ныне столь широкое применение, что трудно понять, как наши предки могли обходиться без них. К услугам многомерной геометрии прибегают химик, исследующий свойства многокомпонентных систем, и физик, пытающийся выяснить отдельные подробности поведения многих тел (трудности проблемы n

тел столь велики, что вынуждают говорить о «многих телах» всякий раз, когда n ≥ 3), астроном и биолог. Проектировщик машин, создавая зубчатую передачу с большим числом шестерен, также вынужден будет воспользоваться методами многомерной геометрии, если хочет, чтобы его творение не просто соответствовало назначению, а выполняло свою функцию (в том или ином смысле) оптимально.

Четырехмерное евклидово пространство, ближайшего по размерности соседа привычного нам трехмерного пространства, постигла та же участь, что и другие многомерные пространства: оно утратило былую экзотичность и стало привычным инструментом в руках современного исследователя.

Четырехмерный мир — далеко не самое удивительное из того, что создано математической мыслью. Пытаясь найти ответы на внешне простые, но в действительности необычайно глубокие вопросы, математики совершили немало удивительных открытий. Они узнали, что существует не одна, а несколько геометрий, что размерность геометрической фигуры нельзя определять по такому интуитивно очевидному признаку, как «запас» принадлежащих фигуре точек, поскольку, например, множество точек, составляющих отрезок, равномощно множеству точек, составляющих квадрат или куб (иначе говоря, отрезок содержит «столько же» точек, сколько их содержит квадрат или куб), что размерность пространства не обязательно должна быть конечной и даже целой.

Не следует думать, будто столь странное па первый взгляд понятие, как нецелая размерность, является своего рода математическим курьезом и не имеет отношения к действительности.

Как доказывается в механике, простейшая из задач N тел — задача трех тел — приводит к необходимости рассматривать пятимерное пространство, а при произвольном N

≥ 3 — пространство с числом измерений, равным 3N − 4. Но почему нельзя считать N нецелым? Что мешает нам, например, говорить о π-мерном мире? Формулы n
-мерной геометрии нам удается без особых ухищрений распространить на случай n = π. Но самое главное состоит в том, что представление о нецелых размерностях оказывается весьма эффективным в теории фазовых переходов и теории ноля. При рассмотрении некоторого процесса в системе с огромным числом частиц (или степеней свободы) может оказаться, что со временем в него вовлекаются все новые и новые частицы (участвует все большее число степенен свободы). Поэтому и число переменных, которые приходится учитывать в уравнениях, меняется со временем. Быть может, число переменных удобно считать не дискретной, как обычно, а непрерывной величиной. Тут-то и появляются пространства размерности π, √2 и 1,879. Правда, трудно сказать, понадобится ли кому-нибудь рассматривать треугольник в π-мерном пространстве и нужно ли выяснять, чему равна сумма его углов. Возвращаясь из π-мерного пространства в «обычное» 4-мерное, невольно испытываешь большое облегчение — настолько все становится простым и понятным!

Изучать многомерные, и в частности четырехмерные, пространства можно по-разному. Ничто не мешает, например, воспользоваться аксиоматическим методом, неоднократно доказавшим свою мощь, тем более, что, по словам известного геометра Г. С. М. Кокстера, «аксиоматический подход рассеивает таинственность, не уменьшая очарования самой идеи».

Однако для первого знакомства с четырехмерным миром нам кажется более подходящим метод аналогии. Основываясь на наглядно-геометрических представлениях о размерности геометрических фигур, мы можем совершать постепенное восхождение по шкале размерностей и переходить от одномерных фигур к двумерным, от двумерных — к трехмерным и, наконец, сделать решающий шаг: воспользоваться замеченными закономерностями и перейти к рассмотрению четырехмерных фигур. Таков обычный путь использования аналогии — лестницы, ведущей от известного к неизвестному и позволяющей не только овладевать накопленными знаниями, но и открывать новое. Менее традиционное применение аналогии состоит в том, что мы мысленно пытаемся представить себе трудности, с которыми сталкивается двумерное существо при попытке наглядно вообразить себе третье измерение, и экстраполируем свое превосходство над обитателем двумерного мира... на самих себя!

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература