Читаем Флатландия. Сферландия полностью

Первое возражение вызвано тем, что флатландцы, глядя на Отрезок прямой, видят нечто, обладающее не только длиной, но и толщиной (ибо Отрезок не был бы виден, если бы не обладал некоторой толщиной). Следовательно, заключают критики, флатландец не может не признать, что его соотечественники обладают не только длиной и шириной, но и некоторой, хотя и весьма малой, толщиной, или высотой. Это возражение на первый взгляд кажется настолько убедительным (а для жителя Трехмерия почти неопровержимым), что, впервые услышав его, я попросту лишился дара речи. Но, я думаю, ответ моего старого бедного друга полностью устраняет сомнения.

— Я не отрицаю, — заявил Квадрат по этому поводу, — достоверности тех фактов, на которые ссылается критик, но не могу согласиться со сделанным им выводом. Мы, обитатели Флатландии, действительно обладаем Третьим, не известным нам Измерением, называемым «высотой», так же, как вы, обитатели Трехмерия, обладаете Четвертым, не известным вам Измерением, не получившим пока еще особого названия. Я назову его гипервысотой. Но мы, флатландцы, способны воспринимать нашу «высоту» ничуть не в большей степени, чем вы, обитатели Трехмерия, свою «гипервысоту». Даже я, единственный флатландец, побывавший в Трехмерии и удостоенный привилегии в течение двадцати четырех часов воочию постигать сокровенный смысл понятия «высота», повторяю, даже я перестал теперь понимать, что это такое, и не могу более ни наглядно представить себе высоту, ни тем более доказать ее существование. Мне остается лишь одно: принять существование высоты на веру.

Причина моих затруднений очевидна. Каждое пространственное измерение подразумевает некое направление, означает возможность указывать размеры тел вдоль этого направления, возможность отличать большие тела от меньших. В то же время все Отрезки, наблюдаемые нами во Флатландии, имеют одинаковую исчезающе малую толщину (или, если угодно, высоту) и, следовательно, не содержат в себе ничего такого, что бы рождало в наших умах представление об этом Измерении. Никакой «сверхчувствительный микрометр» (им предложил воспользоваться один излишне торопливый критик из Трехмерия) не принес бы нам ни малейшей пользы, ибо мы не знали бы ни того, что следует измерять, ни того, в каком направлении это надо делать. Когда мы видим Отрезок прямой, мы видим нечто длинное и светящееся. Светимость, так же как и длина, необходима для его существования. Отрезок, который перестает светиться, погибает. Именно поэтому все мои флатландские друзья, когда я заводил с ними разговор о неизвестном нам Измерении, каким‐то образом проявляющемся в Отрезке, заявляли: «Вы, должно быть, имеете в виду яркость». Если я отвечал им, что имею в виду реальное Измерение, то они возражали: «Реальное Измерение? Тогда укажите нам размеры Отрезка вдоль этого измерения или сообщите, в каком направлении оно простирается». Это заставляло меня умолкнуть, поскольку я не мог сделать ни того, ни другого, Не далее как вчера, когда Верховная Окружность (иначе говоря, наш Высший Жрец), прибыв с инспекцией, совершаемой ею раз в году, в государственную тюрьму, нанесла мне седьмой визит и в седьмой раз спросила: «Так ли я высока, как прежде?», я попытался убедить ее в том, что она, сама того не ведая, обладает высотой, а не только длиной и шириной. И каков же был ее ответ? «Вы говорите, что я «высока». Измерьте мою высоту, и я поверю вам». Что мне оставалось делать? Как мне было ответить на вызов Верховной Окружности? Я был подавлен, а она, торжествуя, покинула мою камеру.

Вам кажется все это странным? Тогда представьте себя в аналогичном положении. Предположим, что Некто из Четырехмерного Пространства, удостоив вас своим посещением, обращается к вам со словами: «Когда бы вы ни открыли глаза, вы видите плоскую Фигуру (обладающую двумя Измерениями) и делаете заключение о том, что видите объемное Тело (обладающее тремя Измерениями), но в действительности вы также видите (хотя и не сознаете этого) Четвертое Измерение. Под ним я понимаю не цвет и не яркость и не что‐либо в том же роде, а истинное Измерение, хотя я не могу указать вам ни направление, в котором оно простирается, ни способ, позволяющий устанавливать размеры тел вдоль него».

Что бы вы сказали такому гостю? Разве не постарались бы упрятать его за семью замками? Именно такая участь и постигла меня: для нас, флатландцев, ничуть не менее естественно посадить под замок Квадрат, утверждающий, будто существует Третье Измерение, чем для вас, жителей Трехмерия, заключить в темницу Куб, распространяющийся о существовании Четвертого Измерения. Сколь сильно семейное сходство слепо подвергать гонениям все необычное прослеживается у представителей всех Размерностей! Точки, Отрезки прямых, Квадраты, Кубы, Гиперкубы — все мы склонны к одним и тем же ошибкам, все в равной мере являемся рабами предрассудков своей размерности. Как сказал один из ваших поэтов:

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература