Читаем Флатландия. Сферландия полностью

Именно этот не совсем обычный способ изучения (или, лучше сказать, «постижения») геометрии четырехмерного евклидова пространства и искривленного расширяющегося пространства избрали авторы «Флатландии» и «Сферландии»: английский педагог Эдвин Э. Эбботт и голландский ученый Дионис Бюргер. Написанные в разное время различными авторами и на разных языках, эти произведения объединены не только преемственностью тематики, но и «родственными узами» героев, от лица которых ведется повествование. Если у Эбботта в роли рассказчика выступает Квадрат, то у Бюргера его сменяет Шестиугольник, который доводится Квадрату пнуком. Мир, в котором живет Шестиугольник, устроен гораздо сложнее евклидовой плоскости его деда: этот мир искривлен (Шестиугольник обитает на поверхности огромной сферы) и к тому же расширяется. В этом различии — отзвук великих перемен в воззрениях на природу реального пространства, происшедших с выхода и свет первого издания «Флатландии» A880 г.) до появления «Сферландии» A957 г.). Юмор, причудливая, подчас гротескная литературная форма, множество убедительных математических подробностей двумерного бытия сделали произведения Эбботта и Бюргера необычайно популярными. Их (наравне с бессмертной «Алисой» Льюиса Кэррола) охотно цитируют авторы серьезных научных трактатов по многомерной геометрии и теории относительности.

Не следует думать, будто произведения Эбботта и Бюргера, столь разительно отличающиеся от обычных «курсов», «введений» и «популярных очерков», служат своего рода четвертым измерением, «перпендикулярным» всей прочей литературе но занимательной математике. Яркие и самобытные, эти книги преследуют ту же цель, что и их «трехмерные» (то есть более привычные по форме) сородичи по жанру: учить математике так, как постигают мир дети, — играя. Именно общность цели в гораздо большей степени, чем сходство тех или иных особенностей изложения, роднит «Флатландию» и «Сферландию» с произведениями таких мастеров этого жанра, как Кэррол, Гарднер и Штейнгауз, уже известными нашему читателю.

Вместе с тем нельзя не отметить, что во Флатландии, и даже в Сферландии, с точки зрения физики не все обстоит благополучно. На первый взгляд кажется, что обитатели двумерия действительно не могут ничего узнать о существовании третьего измерения. Уступая искусству авторов, читатели склонны согласиться и с тем, что четвертое измерение, возможно, существует, но просто недоступно нашему непосредственному восприятию.

Все это правильно лишь до тех пор, пока речь идет о геометрии и о механике. (Кстати, говоря об измерении расстояний при помощи света, автор «Сферландии» действует в приближении геометрической оптики: свет распространяется в виде «лучей», а не «волновых фронтов»!) Прямая «выглядит» одинаково и в двух, и в трех измерениях, и по траектории материальной точки нельзя определить размерность того пространства, в котором она движется. Но стоит лишь от механики частиц перейти к распространению волн, как все изменяется.

Если в двумерном мире распространяются колебания, то картина будет различной в зависимости от того, будут ли сами колебания истинно двумерными или двумерны лишь приборы и наблюдатель, регистрирующие трехмерные колебания. Колебания, происходящие в трехмерном пространстве, нельзя удержать на двумерной поверхности: они будут расходиться в трех измерениях, и двумерный наблюдатель обнаружит утечку энергии. (Удержать на плоскости можно лишь цилиндрическую волну, излучаемую перпендикулярным плоскости стержнем. Однако цилиндрическая волна, пройдя через какую-то точку, не исчезнет бесследно. Она оставит за собой «хвост» — колебания, приходящие от все более и более удаленных точек излучателя.) В теории дифференциальных уравнений доказывается, что волны в пространствах четной и нечетной размерностей ведут себя неодинаково. Различаются по своему поведению в пространствах четной и нечетной размерностей и волновые функции. Изучая квантовые свойства атома, можно убедиться в том, что наше пространство трехмерно.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература