К тому моменту они со Стивом Чу уже начали работать над применением физики отдельных молекул в исследованиях рибосомы. Я узнал об их исследованиях, находясь в Стэнфорде в 2000 году – сразу после того, как мы расшифровали структуру 30S. Когда едешь в американский университет читать лекцию, это всегда напоминает собеседование. По прибытии тебе выдают расписание со списком сотрудников, с которыми ты должен встретиться, прежде чем сможешь выступить. Интересно говорить с людьми, работающими в разных дисциплинах, узнавать об их работе, но, когда вы испытываете джетлаг после длительного путешествия, день может стать изнурительным. Я не знал Стива Чу и не подозревал о его интересе к биологии, поэтому удивился, что у меня в расписании – известный физик. Быстро навел о нем справки и узнал, что он выполнил некоторую работу по фолдингу РНК. Когда Скотт Бланшар, ныне ведущий практикующий специалист по данному методу, а тогда – аспирант Джоди, проводил меня к нему в кабинет, Стив явно уже забыл, что нам назначена встреча. Он поприветствовал меня растерянным взглядом, усадил и спросил, о чем я хотел бы поговорить. Я подумал, что это немного странно, но сказал, что о фолдинге. Он сделал паузу и сказал: «Давайте начистоту. Вы – постдок, приехали сюда на собеседование к Дэну Хершлагу, так?» Его коллега Дэн был специалистом по физической химии и работал над РНК. Я даже не знал, то ли мне воодушевиться, что я до сих пор так молодо выгляжу, то ли обидеться, что он не только не слышал о нашей структуре 30S, но и вообще меня не знал! Это был один из редких случаев, когда меня резко спускали с небес на землю.
Джоди и Стив, работая со своими учениками, такими как Скотт Бланшар и с Рубен Гонсалес, стали первыми применять такой метод для изучения функций рибосом. Сегодня этот метод помогает детально определять время поступления и длительность работы различных факторов в рибосоме.
Второй физический метод был еще интереснее. Физики выяснили, как удерживать отдельные молекулы в поле и воздействовать на них. Таким образом можно было, например, вытащить мРНК или растущую цепочку и измерить силу воздействия рибосомы во время транслокации от одного кодона к другому. Одним из лидеров в этой области является Карлос Бустаманте из Университета Беркли, который работал в тандеме с Начо Тиноко и Гарри Ноллером.
Итак, структуры изучались старыми и новыми методами, и все это помогало понять работу рибосомы как молекулярной машины. Но кроме того оставалось еще множество вопросов. Иногда клеткам нужно в изобилии производить конкретный белок. Иногда синтез белка нужно остановить. Что именно делают рибосомы в клетке в каждый момент времени и как клетка управляет их работой?
Новый метод, позволяющий подступиться к этим вопросам, был заложен давным-давно, когда Джоан Стейц показала: если избавиться от всей мРНК с рибонуклеазой – ферментом, расщепляющим РНК, – останется фрагмент, прикрытый рибосомой таким образом, что убрать его вы не сможете. Именно к этому фрагменту РНК, очевидно, и прикрепляется рибосома. В начале 1970-х путей к продолжению этого исследования еще не было. Почти тридцать лет спустя открытие Джоан удалось использовать новым революционным способом благодаря Джонатану Вейсману. Его можно дважды назвать ученым во втором поколении: его родители были преподавателями в Йеле, но позже его мать Мирна, ставшая профессором в Колумбийском университете, вышла за Маршалла Ниренберга, участвовавшего в расшифровке человеческого генома. В довершение всего Джонатан рассказал мне, что однажды, будучи еще студентом, выполнял проект в лаборатории Питера Мура, то есть занялся молекулярной биологией, еще когда был совсем молод.
Джонатан понял, что новые методы секвенирования позволяют приоткрыть клетку, вынуть оттуда всю РНК и разобрать на фрагменты, накрытые разными рибосомами, амплифицировать их и секвенировать. Тогда можно получить «снимок», демонстрирующий, что делает рибосома в каждый момент времени во всех уголках клетки. Такая техника, именуемая профилированием рибосомы, привела ученых к всевозможным неожиданным находкам. Удалось рассмотреть, где рибосомы приостанавливаются на фрагменте мРНК, где собираются в кучу, а где рибосом меньше, чем предполагалось. Также можно проследить, какие мРНК транслируются больше, а какие меньше на различных отрезках жизненного цикла клетки. Стало возможно конкретизировать вопросы о том, что синтезируют белки в клетке в каждый момент времени и даже в каких количествах. Этот метод оказал огромное влияние на наши представления о работе рибосом.