Читаем Геометрия, динамика, вселенная полностью

Однако, используя язык расслоенных пространств, этому заклинанию можно придать некоторый физико-геометрический смысл. Допустим, что изотопическое пространство является слоем над базой — пространством Евклида (Минковского). Иначе говоря, мы представляем реальное физическое пространство как расслоенное пространство с базой — видимым пространством и слоем — изотопическим (зарядовым) пространством. Нам нужно, чтобы свойства этого слоя удовлетворяли двум условиям: 1) слой должен быть трехмерной сферой (аналог пространства, в котором вращается вектор обычного спина), 2) размеры этой сферы должны быть очень малы, во всяком случае, много меньше расстояний 10**-16 см, хорошо изученных на опыте. Если бы радиус слоя превышал 10**-16 см, то слой изотопическое пространство — проявлялся бы на экспериментах, в основе которых лежат представления о реальном физическом пространстве. Этот эффект, например, проявлялся бы в отклонении наблюдаемого сечения рассеяния позитронов на электронах от вычисленного значения сечения. Поскольку такое отклонение отсутствует, то следует сделать вывод, что если изотопическое пространство и реально, то его размеры (размеры слоя) весьма малы. В дальнейшем, в гл.3, мы оценим эти размеры.

Исключительная малость размеров изотопического пространство делает в известном смысле иллюзорной попытку провести грань между словами «реальное» и «воображаемое» пространство. На опыте это пространство ненаблюдаемо, а слова: «изотопическое пространство есть слой над базой видимое пространство» — имеют в значительной степени филологические смысл.

≡=РИС. 5

Подобная квалификация кажется тем более оправданной, поскольку простая геометризация изотопического спина никак не увязывается с взаимодействием частиц. Чтобы реализовать связи в треугольнике геометрия — изотопический спин взаимодействие, нужна руководящая идея. Пока мы ограничимся постулированием такой идеи, а в гл.3 подробно изложим аргументы в ее пользу.

В настоящее время представляется, что основой сформулированного выше «треугольника» является калибровочная инвариантность. В качестве предварительного оправдания подобного постулата можно привести довод: калибровочная симметрия (правда, в различных модификациях) лежит в основе четырех известных взаимодействий.

Можно наглядно (но упрощенно) представить геометрическую интерпретацию изотопического спина (рис. 5). К каждой точке прямой «прикреплена» сфера произвольного (единичного) радиуса, в которой вращается вектор состояния, зависящий от координаты. Разумеется, реально точка базового пространства имеет три, а не одно измерение, однако представить наглядную 4-мерную конструкцию невозможно.

9. МНОГОМЕРНАЯ ИНТЕРПРЕТАЦИЯ ВЗАИМОДЕЙСТВИЙ

Для понимания дальнейшей процедуры геометризации взаимодействия нужно четко представить следующие положения:

1. Взаимодействие обуславливается свойствами частиц переносчиков взаимодействия, и в частности их изотопическим спином (см. Дополнения).

2. Состояние представляется вектором, вращающимся в слое расслоенного пространства.

3. Взаимодействие определяется характеристиками расслоенного пространства, и в частности связностью.

4. В основе взаимодействия лежит калибровочная инвариантность.

Эти положения носят программный характер. Дальнейшее представляет их конкретную реализацию. Для простоты ограничимся вначале электродинамикой. Как упоминалось ранее, уравнения электродинамики однозначно определяются характеристиками фотона — частицы, переносящей электромагнитное взаимодействие. Масса и изотопический спин фотона равны нулю. Это обстоятельство приводит к фазовой инвариантности функции состояния

i ALPHA(x) PSIG'(x) — > e|||||||||| Ψ(x) и калибровочной инвариантности потенциалов A'(x) — > A(x) + ∂ f (x) / ∂ x. Важно, что в формуле для преобразования функция ALPHA(x) простое (хотя, возможно, и комплексное) число, а не матрица. Это свойство определяется нулевым значением изотопического спина фотона. Если бы изотопический спин частицы-переносчика был отличен от нуля, то коэффициент ALPHA представлялся бы матрицей, что кардинально изменяло бы ситуацию. Этот случай будет рассмотрен далее.

Вернемся теперь к соотношению инвариантности функции Ψ в электродинамике и будем геометрически

i ALPHA(x) интерпретировать фазовый множитель e||||||||||. Рассмотрим, как и ранее, простейший случай статического поля. В этом случае ALPHA(x) = const. Однако (и это обстоятельство играет важнейшую роль) ALPHA может иметь любое действительное значение.

Напомним еще раз, что вследствие теоремы Эйлера функция i ALPHA e||||||| соответствует точке в плоскости комплексного переменного:

i ALPHA e||||||| = cos ALPHA + i sin ALPHA (52)

Таким образом, cos ALPHA есть значение действительной,

i ALPHA а sin ALPHA — мнимой части комплексного числа e|||||||.

i ALPHA Модуль комплексного числа! e|||||||! = 1. С геометрических позиций эта интерпретация эквивалентна

Перейти на страницу:

Похожие книги