По правде, что бы я ни обнаружил в своем конверте, подтвердится закон Мерфи: «Все, что может пойти не так, пойдет не так». Другой конверт в среднем всегда будет лучше моего. Если я найду в своем конверте $400, в другом будет либо $800, либо $200, а значит, среднее – $500. При таком образе мыслей я никогда не смогу выбрать верно. Выгода в оставшемся конверте всегда будет на 25 % больше моей. Так может, лучше переменить решение – если мне предложат такой вариант, прежде чем я смогу увидеть, что там, в другом конверте? Если я сделаю так, то начну «бесконечную петлю». Но почему такой простой выбор стал столь сложным?
История, которую я вам рассказал, – это знаменитый парадокс, и впервые его представил бельгийский математик Морис Крайчик (1882–1957). Впрочем, его история была о галстуках. Двое спорили о том, чей галстук лучше, и попросили третьего, ведущего галстучного эксперта Бельгии, выступить в роли судьи. Тот согласился, но при условии, что победитель отдаст свой галстук проигравшему в качестве утешительного приза. Владельцы недолго думая согласились, ведь каждый решил: «Не знаю, лучше ли мой галстук. Я могу его лишиться, но могу и приобрести лучший, так что эта игра мне на пользу, как и пари». Как мог каждый из соперников поверить в то, что преимущество на его стороне?
В 1953 г. Крайчик предложил иную версию истории, задействовав в ней двух других поссорившихся бельгийцев. Они галстуков уже не носили, потому что были так набиты бельгийским шоколадом, что едва могли дышать. Вместо этого они спорили о том, сколько денег у другого в кошельке, и решили, что тот, кто окажется богаче и счастливее, отдаст свой бумажник бедному противнику. А если все закончится ничьей, оба вернутся к своим шоколадкам.
Опять же, каждому казалось, что преимущество на его стороне. Если случится потерпеть поражение – что же, отдавать все равно придется меньше, чем может принести победа. Что же это – великая игра или нечто иное? Попытайтесь сыграть в нее на улице со случайными прохожими и посмотрите, что будет. В 1982 г. Мартин Гарднер сделал эту историю популярной в своей книге «А ну-ка, догадайся» [9]
[10] – одной из самых лучших, самых простых и самых увлекательных из всех самых лучших, самых простых и самых увлекательных книг, когда-либо написанных о проницательности и смекалке.Барри Нейлбаф (профессор менеджмента на кафедре Милтона Стейнбаха в Йельской школе менеджмента), ведущий специалист по теории игр, в своей статье, опубликованной в 1989 г., предложил версию этой истории с конвертом. Возможно, вы удивитесь, но даже сегодня у этой игры нет решения, с которым были бы единодушно согласны все статистики.
Одно из предлагаемых решений подразумевает, что мы противопоставляем среднее геометрическое и среднее арифметическое. Среднее геометрическое – это квадратный корень из произведения двух чисел. Например, среднее геометрическое 4 и 9 равняется квадратному корню из их произведения (результата перемножения обоих чисел) – а именно 6. Итак, если мы нашли в своем конверте
Студенты, изучающие теорию вероятностей, сказали бы: «Вам не найти равномерное распределение для множества рациональных чисел». Впечатляет?
Если вы не понимаете, что это значит, превосходно! Лучшая версия этого парадокса не имеет никакого отношения к вероятностям. Она появляется в книге «Сатана, Кантор и бесконечность», прекрасном произведении (с прекрасным названием, правда?) Рэймонда Смаллиана, американского математика, философа, классика-пианиста и фокусника[11]
. Смаллиан представляет две версии парадокса:1. Если в вашем конверте
2. Если конверты содержат соответственно
Вы в растерянности? Я тоже.