Великий английский экономист Джон Мейнард Кейнс (1883–1946) описал версию такого конкурса в 12-й главе своей книги «Общая теория занятости, процента и денег» (1936). По мысли Кейнса, если мы хотим выиграть приз, нужно догадаться, какую фотографию одобрит большинство читателей. Это степень бакалавра софистики. Но, если мы еще более искушены, нам следует перейти сразу к степени магистра – и попытаться догадаться, какие снимки, по мнению других участников, будут наиболее привлекательными
Конечно же Кейнс говорил не о фотографиях, а об игре на фондовой бирже, где, как он считал, все поступали примерно так же. В конце концов, если мы намерены купить акции потому, что считаем, будто они хороши, – это подход далеко не лучший. Мудрее держать деньги под матрасом или на сберегательном счете. Цена акций поднимается не тогда, когда они хороши, а когда многие верят в то, что они хороши, – или когда многие, по мнению многих, верят в то, что эти акции хороши.
Хороший пример – цена акций Amazon. В 2001 г. они стоили дороже, чем акции всех остальных книготорговых фирм Америки, – причем Amazon к тому времени не заработала еще ни доллара. Но почему так было? Просто многие, по мнению многих, верили в то, что компания Amazon будет компанией Amazon.
Приведенная ниже игра – хороший пример идеи Кейнса. Ален Леду многое сделал для того, чтобы популярность обрела именно эта версия, которую он опубликовал во французском журнале Jeux et Stratégie [13]
в 1981 г.В комнате группа людей. Каждого просят загадать число от 0 до 100. После этого устроитель игры находит среднее арифметическое выбранных чисел и умножает его на 0,6. Итог умножения становится целевым числом. И игрок, загадавший число, самое близкое к этому итогу, выигрывает «мерседес» (они тогда продавались с неплохой скидкой).
Какое число выберете? Подумайте немного.
Есть два способа выбора: нормативный и позитивный.
В нормативной версии, которая предполагает, что все игроки разумны и рациональны, следует выбрать ноль. И вот почему. Если предположить, что люди выбирают числа случайным образом, то ожидаемое среднее равняется 50. Значит, чтобы победить, проводим быстрый расчет: 50×0,6=30 – выбор, кажется, ясен! Но постойте! Что, если каждый это поймет? Тогда средним будет 30. Получается, нужно выбрать 18? (30×0,6=18.) А если все прознают и об этом? Тогда средним будет 18, а нам нужно выбрать 10,8. (18×0,6=10,8.) Конечно же на этом история не кончается, и, если мы продолжим в том же духе, мы в конце концов дойдем до ноля.
Стратегия выбора ноля – это равновесие Нэша (с этой мегазнаменитой концепцией мы встретимся в следующей главе), и вот в чем заключается ее смысл: как только я понимаю, что все выбрали ноль, мне нет смысла поступать иначе.
Выбор ноля – нормативная рекомендация; иными словами, это рациональный выбор, если мы верим в то, что все остальные разумны и рациональны. Но что нам делать, если это не так?
Позитивный подход к этой игре основан на том, что будет очень трудно угадать, как распределят числа обычные люди и что роль психологии и интуиции важнее, чем роль математики.
Иногда люди просто не понимают игру. Например, преподаватель кафедры одного из ведущих мировых университетов выбрал 95. Почему? Ведь даже если по какой-то странной причине вы уверены, что все выберут 100, среднее арифметическое составит 100, а значит, самое большое мыслимое число, приводящее к победе, – 60. И все-таки этот странный выбор (95) может стать победным, если все другие участники выбрали еще более странную стратегию и загадали 100.
Один профессор физики однажды объяснил мне, что выбрал 100, чтобы повысить среднее арифметическое и наказать всех своих супер-пупер-умных коллег, выбиравших небольшие числа. «Пусть знают, что жизнь не сахар».
Кстати, я играл в эту игру уже более 400 раз, и ноль выиграл только однажды (в маленькой группе детей с необычайно развитыми математическими навыками). Если группа выбирает малые числа, значит, здесь проблеме уделили больше размышлений, чем в других группах, и учли, что другие тоже могут думать.
Безусловно, число, которое выбирают участники эксперимента, определяют многие и самые разные факторы. На моих уроках экономики студенты справлялись довольно плохо, пока я не понял: им просто не хватает мотивации! Конечно, я не мог выдавать им по маленькому «мерседесу» на каждой игре и потому сказал, что победитель получит надбавку 5 баллов к рейтингу. Их результаты тут же улучшились.
Поиграйте в эту игру с друзьями. И будьте готовы к разочарованиям.
5. Брачный посредник