В шахматах «стратегия» – это набор ответов на любое положение, какое только может возникнуть на доске. Ясно, что у двух игроков может быть огромное множество стратегий. Отметим стратегии белых (первого игрока) буквой S, а стратегии его противника – буквой Т. Как мы уже сказали, теорема Цермело говорит о существовании лишь трех вариантов:
либо у белых есть стратегия (назовем ее S4), при которой они побеждают всегда, независимо от действий черных…
(W = победа белых; B = победа черных; X = ничья)
либо у черных есть стратегия (назовем ее T3), при которой они побеждают всегда, независимо от действий белых…
либо у обоих игроков есть сочетание стратегий, которые при следовании им неизменно приведут к ничьей [12]
(как при игре в «крестики-нолики»):Если все именно так, зачем же люди тогда играют в шахматы? И более того, почему это интересно? Истина вот в чем: когда мы играем партию или наблюдаем за ней, мы не знаем, с каким из трех случаев столкнулись. Возможно, в будущем суперкомпьютеры и смогут найти верные стратегии, но мы еще и близко не подошли к этой стадии, и именно поэтому игра по-прежнему столь увлекает. По словам американского математика и криптографа Клода Шеннона (отца «теории информации»), в шахматах существует более 1043
возможных позиций, не противоречащих правилам. Взгляните на это число:10 000 000 000 000 000 000 000 000 000 000 000 000 000 000.
Ого! Многие думают, что временные рамки, необходимые компьютеру для проверки всех вариантов в шахматах, выходят за пределы возможностей самых современных технологий.
Как-то за ланчем мы разговорились с Борисом Гельфандом, финалистом чемпионата мира по шахматам 2012 г. И я сказал, что сам играю не то чтобы очень, но при этом не так давно мог обыграть любую программу – а сейчас компьютеры выигрывают у меня так быстро, что даже стыдно. И он ответил, что пропасть между игроками-людьми и компьютерами с каждым днем становится все больше и дела складываются не в нашу пользу. Сегодня, добавил он, компьютерные программы легко могут превзойти сильнейших игроков, и разрыв столь велик, что матчи формата «человек против машины» уже не представляют никакого интереса. В шахматах люди потерпели жестокое поражение. В наши дни, заключил гроссмейстер Гельфанд, играть с мощными компьютерными программами (известными как «движки») – это примерно как бороться против медведя гризли… просто поверьте, не стоит вам этого делать.
Игры в формате «люди против людей» намного интереснее.
В наше время, когда в шахматы играют гроссмейстеры, иногда выигрывает тот, кто делает первый ход, иногда – тот, кто отвечает на этот ход, а бывает и так, что игра заканчивается вничью. Игроки и теоретики, как правило, согласны в том, что у белых, делающих первый ход, есть небольшое преимущество. Статистики поддерживают этот взгляд: белые последовательно выигрывают чуть чаще черных, примерно в 55 % всех матчей.
Игроки уже долго спорят о том, чем обернется исход идеальной игры – неизменной победой белых или ничьей. Они не верят в то, что существует выигрышная стратегия за черных (впрочем, несмотря на это широко распространенное мнение, венгерский гроссмейстер Андраш Адорьян, напротив, полагает, что идея о начальном преимуществе белых всего лишь заблуждение).
Я уже оставил шахматы и так и не достиг в них успеха, но если мне будет позволено высказать свою догадку, то она такова: когда оба игрока делают верные ходы, партия всегда окончится ничьей (как при игре в «крестики-нолики»). В будущем компьютеры смогут проверить все уместные варианты и решить, прав ли я в своем предположении.
Довольно интересно, что ученые все еще не могут прийти к согласию в том, каково истинное значение теоремы Цермело. Изначально она была написана на немецком языке, а если вы читали научные или философские тексты на немецком (прекрасный пример – труды Гегеля), то вряд ли удивитесь и тому, что смысл теоремы туманен (о, как же нам повезло, что сейчас язык науки – английский!).
Свет! Камера! Мотор! Кейнсианский конкурс красоты
Представьте, что редакция газеты проводит конкурс, в котором участникам предъявляют двадцать фотографий и просят выбрать самое привлекательное лицо. Те, чей «избранник» наберет большинство голосов, получат право на приз – пожизненную подписку на газету, кофемашину и почетный значок.
Как играть в такую игру? Предположим, мне больше всех понравилось фото № 2. Следует ли отдать за него свой голос? Да – если я хочу, чтобы о моем мнении узнали. И нет – если я хочу подписку, кофемашину и значок.