Читаем Игра случая. Математика и мифология совпадения полностью

Брайан Зикмунд-Фишер, который преподает теорию рисков и теорию вероятностей в Медицинской школе Мичиганского университета, столкнулся с такой дилеммой в 1998 г. Ему диагностировали миелодиспластический синдром и сказали, что без лечения он проживет всего 10 лет, а с лечением у него будет 70 %-ная вероятность жить нормальной жизнью{63}. Он сделал ставку на трансплантацию. Смысл в том, что шансы ничего не говорят об отдельном человеке. Вероятность в 70 % получена посредством сбора статистических данных о сотнях (возможно, тысячах) людей, которые столкнулись с той же дилеммой, – государственная, нелокальная статистика. Статистические группировки описывают тенденции и возможности, а не отдельные случаи, когда можно выиграть или проиграть.

Возьмем некое событие, которое вы могли бы счесть редким. Его математические шансы могут быть один к миллиону, но, вероятно, такие цифры связаны с тем, что событие оценивается как локальный феномен. В качестве примера можно взять белку, которую ударило молнией в тот момент, когда она пересекала дорогу. Когда мы говорим на этом знакомом языке шансов, то часто выражаемся фигурально, без какого-либо последовательного метода определения терминов. Итак, «один на миллион» обычно применяется к событию, которое, как мы думаем, происходит в довольно широких пределах Соединенных Штатов. Но США – большая страна. Это нетрудно увидеть, пролетев над маленькими домиками, маленькими деревьями и обширными зелеными полями. Мы не думаем ни о том, сколько там внизу белок, ни о том, сколько из них пересекают дорогу в отдельный момент времени. Ученые оценивают численность белок в США в 1,12 млрд, что в 3 раза больше населения страны. И белки постоянно пересекают дороги.

Учитывая 1,12 млрд белок, 6,5 млн км дорог и 9,5 млн км2 площади США, вполне возможно, что каждую минуту 300 белок пересекают дороги{64}. Во время грозы это число может быть даже больше. В среднем в Соединенных Штатах случается 110 000 гроз в год. Летом гроз гораздо больше, чем зимой, что делает возможность поражения белки ударом молнии летом действительно очень большой.

Каждое явление в природе вызывается большим числом неопределенных возможностей. Когда бросают игральную кость, то результат сильно зависит от ее начального положения в руке бросающего и значительно слабее – от звуковых волн, создаваемых голосами присутствующих в комнате. Это лишь два внешних фактора, направляющих кость к положению, в котором она остановится.

То, как она ударяется об стол, точность ее балансировки, ее движение по руке, упругость соударения со столом – все это повлияет на то, какая из сторон будет направлена вверх, когда кость остановится.

Рассмотрим игру, в которой возможен только выигрыш или проигрыш, а вничью сыграть невозможно. Пусть X обозначает исход испытания, а P (

X) – вероятность наступления этого исхода. Если бы вы, например, бросали монету, P (орел) равнялось бы 1/2, как и P (решка). В колесе для американской рулетки 38 ячеек, включая 0 и 00: 18 красных; 18 черных; 0 и 00 – зеленые. Если вы ставите на красное, P (красное) равняется 18/38 или, если упростить, 9/19, а P (не красное
) равняется 10/19. Если бы вы бросали игральную кость, надеясь выбросить «очко» (1), то P (1) равняется 1/6.

Выберите любую подобную игру и спросите себя: какова вероятность выиграть 0, 1, 2, 3 или 4 раза? Вполне уместный вопрос, поскольку реальные азартные игры предполагают совокупные последовательности выигрышей или проигрышей. Вспомним о Джоан Гинтер, о том, как она 4 раза выиграла в лотерею. Вам также могут быть интересны шансы сыграть лучше, чем если бы вы остались при своих, или по крайней мере шансы не проиграть больше 2 из 4 ставок.

Обозначим последовательностями из букв W и L серии выигрышей или проигрышей. Четырехкратный проигрыш будет обозначен через LLLL, а четырехкратный выигрыш – через WWWW. Есть лишь один способ выиграть все 4 раза и только один – не выиграть ни разу. А если выиграть 1 раз из 4? Есть 4 способа выиграть 1 раз из 4, а именно: WLLL, LWLL, LLWL и LLLW. И, конечно, способов проиграть только 1 раз из 4 также 4. Как насчет 2 выигрышей за 4 тура? Двухкратный выигрыш будет представлен 6 вариантами:

WWLL, WLWL, WLLW, LWWL, LWLW и LLWW. При независимых событиях, где исход первого события не имеет памяти о других (например, туры при игре в рулетку или игра в орлянку), вероятности одного или другого из 2 событий – это произведение вероятностей каждого из них. Исходя из того, о чем мы говорили в главе 4, если A и B – это возможные исходы, вероятность наступления и A, и B – это произведение P (A) P
(B), а вероятность наступления A или B – P (A) + P (B) – P (A) × P (B).

Перейти на страницу:

Похожие книги

Опасная идея Дарвина: Эволюция и смысл жизни
Опасная идея Дарвина: Эволюция и смысл жизни

Теория эволюции посредством естественного отбора знакома нам со школьной скамьи и, казалось бы, может быть интересна лишь тем, кто увлекается или профессионально занимается биологией. Но, помимо очевидных успехов в объяснении разнообразия живых организмов, у этой теории есть и иные, менее очевидные, но не менее важные следствия. Один из самых известных современных философов, профессор Университета Тафтс (США) Дэниел Деннет показывает, как теория Дарвина меняет наши представления об устройстве мира и о самих себе. Принцип эволюции посредством естественного отбора позволяет объяснить все существующее, не прибегая к высшим целям и мистическим силам. Он демонстрирует рождение порядка из хаоса, смысла из бессмысленности и морали из животных инстинктов. Принцип эволюции – это новый способ мышления, позволяющий понять, как самые возвышенные феномены культуры возникли и развились исключительно в силу биологических способностей. «Опасная» идея Дарвина разрушает представление о человеческой исключительности, но взамен дает людям возможность по-настоящему познать самих себя. Книгу перевела М. Семиколенных, кандидат культурологии, научный сотрудник РХГА.

Дэниел К. Деннетт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука