Теперь давайте возьмем случай с 2 выигрышами. Чтобы упростить запись, примем, что
Поскольку логической связкой является
Рассмотрим четыре разные игры. В первой игре мы играем в рулетку и ставим на красное. Во второй мы подбрасываем монетку и ставим на выпадение орла. В третьей мы подбрасываем две игральные кости и выигрываем, если в сумме выпало 7, а во всех остальных случаях проигрываем. Наконец, в последней игре мы покупаем билет Texas Lotto и рассматриваем как выигрыш только джекпот. В таблице 7.1 приведены вероятности выиграть в каждой из этих игр (первый столбец). Мы также можем сыграть несколько раз. Допустим, мы играем четыре раза – тогда можем выиграть ноль, один, два, три или четыре раза. Вероятности соответствующих событий также приведены в таблице 7.1.
В теории и для рулетки, и для орлянки в соответствии с табл. 7.1 наиболее вероятен выигрыш в 2 турах из 4. Мы могли бы составить таблицу вероятностей для 100 туров рулетки и орлянки, однако это было бы ужасно долгим и непрактичным занятием. Вместо этого позвольте сказать только то, что в 100 турах орлянки игрок, ставящий на орла, с наибольшей вероятностью выиграет 50 раз, а в 100 турах рулетки, делая ставку на «красное», игрок с наибольшей вероятностью выиграет (как будет показано) только 37 раз{65}
. Священный Грааль игрока – знать, какие именно 37 раз.Отметим симметричность, присущую рулетке и орлянке, асимметричность костей и предельную асимметричность лотерей. Как насчет строки для рулетки в табл. 7.1? На гистограмме, изображающей число туров, когда выпадает «красное», против вероятности наступления этого количества туров, где выигрывает «красное» (см. рис. 7.1A), около числа 2 есть некоторая асимметрия, а центр притяжения (геометрическая точка равновесия), видимо, немного меньше 2. Когда число туров увеличивается до 8, отклонение становится еще более явным (см. рис. 7.1B){66}
.Увеличение числа туров в рулетке приводит к сглаживанию графика. Для 100 туров у нас будет 101 прямоугольник с основанием в одно деление{67}
.На рис. 7.2 изображено то, что называется
В случае орлянки, где
Треугольник Паскаля – это числа, расположенные в виде треугольника следующим образом:
Каждое число на рис. 7.3 – это сумма двух чисел, расположенных точно над ним в линии сверху: например, 3-е число (10) в 5-й линии сверху – это сумма 4 и 6 на 4-й линии. Сперва отметим симметричность, а затем обратим внимание на то, что числа те же, что мы видели, когда раскладывали по степеням сумму двух переменных
Если мы возведем в степень
Для любого