Концепция сопротивляемости контента также важна с точки зрения создания эмуляционной модели мозга. Работающая с большой скоростью имитационная модель мозга имеет преимущество перед биологическим мозгом не только потому, что решает те же задачи быстрее, но и потому, что аккумулирует более подходящий контент, в том числе релевантные с точки зрения задачи навыки и опыт. Однако, чтобы раскрыть весь потенциал быстрого накопления контента, системе нужны соответствующие большие объемы памяти. Бессмысленно читать подряд энциклопедии, если к тому времени как дойдешь до статьи Abalone (африканский муравьед), забудешь все, что узнал из статьи Aardvark (моллюск). В то время как у систем ИИ, скорее всего, недостатка в памяти не будет, модели мозга могут унаследовать некоторые ограничения от своих биологических оригиналов. И, как следствие, потребуют каких-то архитектурных усовершенствований, чтобы иметь возможность обучаться без ограничений.
До сих пор мы рассматривали сопротивляемость архитектуры и контента — то есть то, насколько может быть сложно улучшить
После появления интеллектуальных программ (систем ИИ или имитационных моделей мозга) усилить
Таким образом, сопротивляемость при усилении коллективного или скоростного (и, возможно, качественного) интеллекта в программах человеческого уровня, скорее всего, будет низкой. Единственной сложностью останется получить доступ к дополнительным вычислительным мощностям. Есть несколько путей расширения аппаратной базы системы, каждый из которых требует различных затрат времени.
В краткосрочной перспективе вычислительная мощность может масштабироваться практически линейно исключительно за счет дополнительного финансирования: увеличится оно вдвое — можно будет купить вдвое больше компьютеров, что позволит запустить вдвое больше программ одновременно. Возникновение облачных вычислительных услуг дает возможность любому проекту увеличивать использование вычислительных ресурсов, даже не теряя времени на доставку дополнительных компьютеров и установку на них ПО, хотя соображения секретности могут подталкивать к работе на собственных машинах. (Однако в некоторых сценариях дополнительные вычислительные ресурсы можно будет получить и иными способами, например рекрутируя ботнеты[230]
.) То, насколько легко масштабировать ту или иную систему на определенную величину, будет зависеть от объемов изначально используемой ею вычислительной мощности. Систему, изначально работающую на персональном компьютере, можно масштабировать в тысячи раз меньше, чем за миллион долларов. Масштабировать программу, установленную на суперкомпьютере, гораздо дороже.В чуть более долгосрочной перспективе, по мере того как окажется задействованной все большая часть имеющихся на планете вычислительных мощностей, затраты на приобретение дополнительного оборудования могут начать расти. Например, в сценарии создания имитационной модели мозга в условиях конкуренции затраты на запуск одной дополнительной ее копии должны расти и стать примерно равными выручке, которую эта копия генерирует, поскольку цены на вычислительную инфраструктуру будут подниматься (хотя если эта технология окажется в распоряжении всего одного проекта, он обеспечит себе монопсонию и вследствие этого сможет платить меньше.)