Читаем Искусственный интеллект. Этапы. Угрозы. Стратегии полностью

Скорость изменения уровня интеллекта можно выразить в виде соотношения силы оптимизации, прикладываемой к системе, и ее сопротивляемости:

Совокупная сила оптимизации, действующая на систему, складывается из силы оптимизации, которую производит сама система, и приложенной извне. Например, развивать зародыш ИИ можно за счет комбинации его собственных усилий и усилий команды программистов-людей, возможно, с привлечением широкого глобального сообщества исследователей, постоянно работающих над прогрессом в отрасли производства полупроводников, компьютерных науках и связанных с ними областях[236]:

= система + проект + мир

Изначально зародыш ИИ обладает очень ограниченными когнитивными способностями. То есть в начальной точке величина система мала[237]

. А как насчет проект и мир? Бывают случаи, когда возможности проекта превышают возможности всего остального мира, как было, например, с Манхэттенским проектом, когда большинство лучших физиков мира оказались в Лос-Аламосе и приняли участие в создании атомной бомбы. Но чаще на любой отдельно взятый проект приходится лишь очень небольшая доля общемировых исследовательских возможностей. Однако даже когда возможности мира намного превышают возможности проекта, проект может все-таки превышать мир, поскольку большинство исследователей за пределами проекта сосредоточены на других направлениях работы. Если проект начинает выглядеть многообещающим — что происходит, когда система достигает человеческого интеллектуального уровня или даже раньше, — он привлекает дополнительные инвестиции, что повышает проект. Если достижения проекта становятся достоянием широкой общественности, величина мир также повышается, поскольку растет интерес к искусственному интеллекту в целом и в игру включаются другие участники. Таким образом, на переходном этапе совокупная сила оптимизации, действующая на когнитивную систему, скорее всего, будет расти по мере роста возможностей системы[238].

Рост возможностей системы может дойти до такой точки, где сила оптимизации, которую производит сама система, начинает доминировать над силой оптимизации, приложенной к системе извне (по всем существенным направлениям усовершенствования):

система > проект + мир

Этот рубеж очень важен, поскольку за ним дальнейшее совершенствование системы оказывает весьма сильное влияние на рост совокупной силы оптимизации, приложенной к системе с целью ее совершенствования. То есть включается режим мощного рекурсивного самосовершенствования. Это приводит к взрывному росту возможностей системы в широком диапазоне форм кривых сопротивляемости.

Чтобы проиллюстрировать это, рассмотрим первый сценарий, в котором сопротивляемость постоянна, вследствие чего возможности ИИ растут пропорционально приложенной к нему силе оптимизации. Предположим, что вся сила оптимизации генерируется самой системой и что все интеллектуальные возможности системы направлены на решение задачи совершенствования ее интеллекта, так что система = I[239] Тогда мы имеем:

Решая это простое дифференциальное уравнение, получаем экспоненциальную функцию:

I = Aet/k

Но постоянство сопротивляемости — особый случай. Сопротивляемость вполне может снизиться в зоне человеческого интеллектуального уровня в силу одного или нескольких факторов, рассмотренных в предыдущем разделе, и оставаться низкой в точке перехода и некоторое время после нее (возможно, до тех пор, пока система в конечном счете не упрется в фундаментальные физические ограничения). Предположим, что приложенная к системе сила оптимизации остается примерно постоянной (то есть проект + мирс), пока система не получает возможность сама существенно менять свой дизайн, что приводит к удвоению ее возможностей через каждые 18 месяцев. (Это примерно соответствует историческим темпам совершенствования систем, если объединить закон Мура и прогресс в области создания ПО[240]

.) Такие темпы совершенствования, достигнутые за счет действия примерно постоянной силы оптимизации, приводят к тому, что сопротивляемость снижается обратно пропорционально силе системы:

Если сопротивляемость продолжает снижаться по такой гиперболе, то когда ИИ достигнет точки перехода, совокупная сила оптимизации, действующая на систему, удвоится. То есть:

Следующее удвоение произойдет через 7,5 месяца. В течение 17,9 месяца возможности системы вырастут в тысячу раз, превратив ее в быстрый сверхразум (см. рис. 9).


Рис. 9. Одна из простых моделей взрывного развития интеллекта

Эта конкретная траектория роста имеет точку положительной сингулярности в момент t = 18 месяцев. В реальности предположение, что сопротивляемость является константой, перестанет выполняться по мере приближения системы к физическим границам обработки информации, если не раньше.

Эти два сценария приведены лишь в качестве иллюстрации: в зависимости от формы кривой сопротивляемости возможно множество других траекторий. Суть проста: мощная обратная связь, возникающая в районе точки перехода, должна привести к более быстрому взлету, чем в ее отсутствие.

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература