Математический аспект в симуляции активности мозга тоже проблематичен. Первая проблема касается вычислимости. Вычислимость определяет, существует ли способ превратить математическую формулу в эффективный алгоритм, который можно заложить в цифровую машину. Вычислимость связана с возможностью получения буквенно-цифрового конструкта, а не с какими-либо физическими свойствами системы. И здесь мы упираемся в стенку: поскольку большинство математических описаний природных явлений не могут быть сведены к алгоритмам, их считают невычислимыми функциями. В частности, не существует общей процедуры, позволяющей систематически налаживать цифровой компьютер: не существует алгоритмического выражения для функции F, которая могла бы заранее выявить какую-то будущую неполадку, способную помешать работе компьютера. Что бы мы ни делали, машина всегда будет совершать неожиданные ошибки, которые нельзя предсказать при производстве компьютера и разработке программного обеспечения. Поэтому такая функция F классифицируется в качестве невычислимой функции. И в таком качестве она не удовлетворяет тезису Чёрча – Тьюринга, определяющему тип функций, которые можно симулировать на машине Тьюринга.
Также хорошо известно, что не существует такой вещи, как универсальная антивирусная программа. Причина в том, что функция F, результат которой – все программы, не содержащие вирус, также является невычислимой. Тот же тип рассуждений показывает, почему для цифровых машин не существует ни универсальных систем кодирования, ни алгоритмических процедур для установления того, являются ли динамические системы хаотическими или нет.
То же самое касается живого мозга: он генерирует поведение, которое можно полностью описать только с помощью невычислимых функций. Поскольку машина Тьюринга не справляется с такими функциями, нет возможности точно симулировать их на цифровом компьютере.
Представленные выше примеры – лишь небольшая выборка, отражающая распространенность невычислимых функций в математическом описании природных явлений. Все эти примеры являются следствиями или вариантами знаменитой проблемы остановки, одна из версий которой известна как десятая проблема Давида Гильберта. Проблема остановки касается существования общего алгоритма, позволяющего предсказать, зависнет ли компьютерная программа в какой-то момент или будет продолжать работать. Алан Тьюринг показал, что такого алгоритма не существует. С тех пор проблема остановки Гильберта стала типичной моделью невычислимой функции.
Проблема остановки означает, что мы не можем заранее предсказать, какие функции являются вычислимыми, а какие нет. По этой же причине, среди прочих, гипотеза Чёрча – Тьюринга остается лишь гипотезой: ее никогда не удастся доказать или опровергнуть никакой машине Тьюринга. На самом деле почти никакие функции не могут быть рассчитаны машиной Тьюринга, включая большинство функций, которые пригодны для описания мира природы и которые, по нашему с Рональдом мнению, производятся высокоразвитым мозгом животных.
Уже осознавая ограничения своей вычислительной машины, в опубликованной в 1939 году диссертации сам Алан Тьюринг попытался преодолеть их, придумав то, что он называл вычислениями с оракулом. Смысл машины с оракулом заключался в использовании инструмента из реального мира для решения проблем, которые «
Заявление Тьюринга удивительно. В самом начале эры цифровой информации один из ее основателей уже понимал, что возможности компьютеров ограниченны. Наверное, еще больше шокирует осознание того, что в то время Тьюринг уже убедился в значительном превосходстве вычислительной способности человеческого мозга над способностью созданного им вычислительного инструмента. Как он отмечал, «класс проблем, которые может решить машина, весьма специфичен. Это те проблемы, которые могут быть решены конторским служащим, действующим по заданным правилам и без понимания» и, как выясняется, без ограничения в количестве бумаги. Придя к этому выводу, Тьюринг непреднамеренно положил начало развитию направления гиперкомпьютерных (сверхтьюринговых) вычислений.