Например, большинство моделей, которые, как утверждается, создают искусственную жизнь, используют комбинации разных алгоритмических методов – от объектно-ориентированного и процессно-ориентированного программирования до итеративного подхода – для имитации человеческого поведения. Как считает специалист в области эволюции и вычислительной техники Питер Дж. Бентли, это плохая стратегия, поскольку «не существует логически согласованного метода для корреляции этих программных трюков с биологическими сущностями. И поэтому данный подход приводит к туманным и в целом ненадежным моделям, основанным на субъективных метафорах и желании обеспечить биологическую значимость».
Но подобные проблемы возникают не только в биологии. Математик Майкл Берри приводит простой пример, иллюстрирующий трудности в симуляции любой физической системы, даже такой, казалось бы, простой, как бильярдная игра. Рассчитать результат удара первого бильярдного шара достаточно просто. Оценить результат второго удара уже сложнее, поскольку нужно точнее определять исходное состояние системы для получения приемлемой аппроксимации траектории шара. А дальше дело обстоит еще хуже. В частности, чтобы с большой точностью описать девятый удар, следует принять во внимание уже силу притяжения стоящих у стола людей. И если вы думаете, что даже это слишком трудно, знайте, что для расчета пятьдесят шестого удара требуется учесть влияние каждой отдельной частицы вселенной.
Другая интересная иллюстрация ограниченности предсказаний поведения сложных систем, особенно биологических, связана с ныне широко используемой технологией «больших данных» (big data
). На протяжении нескольких последних лет нам упорно твердят, что при наличии чрезвычайно большого массива данных, содержащих гигантский объем информации о каком-то предмете, с помощью алгоритмов машинного обучения можно с высокой степенью точности предсказать будущее такой же системы. На эту тему написано огромное количество материала, так что здесь у меня просто нет места, чтобы его полностью отразить. Но я все же хочу указать на два очевидно неудачных примера применения этого подхода: предсказания результатов голосования и классификацию бейсбольных команд.Во время выборов президента США в 2016 году десятки миллионов долларов были затрачены на создание систем обработки больших массивов данных, которые, как предполагалось, позволят назвать победителя еще до проведения голосования, не то что до подсчета голосов. К тому моменту, когда на восточном побережье США миллионы людей уже проголосовали и избирательные участки были закрыты, многие традиционные СМИ, включая New York Times, CNN
и три главные американские телевизионные сети, начали раскрывать предсказания своих систем big data, которые практически единогласно прочили убедительную победу кандидату от Демократической партии Хиллари Клинтон. Как всем известно, на этих одних из самых невероятных в истории США президентских выборах победу одержал Дональд Трамп. Юление журналистов и газетных изданий по поводу очевидной победы Трампа было еще позорнее и унизительнее, чем знаменитый заголовок на первой странице Chicago Tribune 3 ноября 1948 года, «Дьюи одержал победу над Трумэном», ошибочно объявлявший о победе Томаса Дьюи над действовавшим президентом Гарри Трумэном, тогда как на деле все было наоборот.
Но почему же предсказания всех этих могучих медийных организаций со всеми инвестированными ими в технологию big data
средствами оказались не лучше, если не хуже прогнозов 1948 года? На момент написания этой главы подробности еще неизвестны, но случившееся очень хорошо иллюстрирует ключевую проблему данного подхода: предсказания подобных систем основаны на предположении, что будущее событие воспроизведет статистику предыдущих событий, использованную для построения базы данных, и выведенных на ее основе корреляций. Сделанные такими системами предсказания могут быть точны только в том случае, если будущее событие происходит таким же образом, как предыдущие. Однако в изменчивых сложных динамических системах предсказания big data легко оказываются бессмысленными, если значения соответствующих переменных отличаются от значений в прошлом либо если эти переменные взаимодействуют совершенно иным образом. Как подсказывает опыт, человеческие сообщества полностью соответствуют определению изменчивых сложных систем, так что у нас мало оснований полагать, что следующие выборы пройдут так же, как предыдущие.