Читаем Как появилась Вселенная? Большие и маленькие вопросы о космосе полностью

Если «отпечатки пальцев» химических элементов в излучении звезд помогли нам детально разобраться в составе Вселенной, почему сами элементы, которым принадлежали эти отпечатки, оставались неизвестными? И почему картина полос одного элемента должна обязательно отличаться от картины другого? В последнее десятилетие XIX и первые годы XX века химики и физики пытались расщеплять атомы, вырывая у них секреты. Именно эта история и поможет нам понять, как астрономы сумели расшифровать элементный состав космоса.

Квантовая радуга

Глядя на радугу, вы, может быть, замечали, что некоторые её цвета выглядят ярче других. Отчасти это объясняется тем, что человеческий глаз – не идеальный приёмник; он больше чувствителен к одним цветам, чем к другим. Но верно и то, что в свете любого источника интенсивность каждого составляющего цвета обычно не одинакова. Спектроскопия – не просто использование призмы для разглядывания цветов, составляющих белый свет; её задача в том, чтобы измерить интенсивность каждого из этих цветов. В солнечном свете, который кажется человеческому глазу белым, на деле скрывается много цветов, у каждого из которых своя интенсивность. В этом и заключается результат работы спектрометра. Задайте поисковику слово «спектр», и вы получите целый букет красивых сочетаний всех цветов радуги. А вот если вы погуглите «спектр на выходе спектрометра», вам покажут лабораторные установки и таблицы интенсивностей. Конечно, они не такие яркие, как радужные картинки, зато содержат много информации и интригующих загадок. (Только не пробуйте проверять всё это, глядя через призму на Солнце! В любой книге, рассказывающей о наблюдениях Солнца, написано, что этого делать нельзя, так что не говорите, что мы вас не предупреждали!)

Тёмные линии в спектре солнечного света ставили учёных XIX века в тупик, но и остальные части спектра тоже вызывали вопросы. Почему цвета имеют строго определённые интенсивности? Эта загадка при ближайшем рассмотрении оказалась глубже, чем на первый взгляд. Ведь устойчивые спектральные закономерности были свойственны не только солнечному свету. Спектр любого раскалённого объекта, от расплавленного железа до горящего дерева, явно зависел от температуры, до которой вещество было нагрето. Чем бы оно ни было, но, стоило ему раскалиться до одной и той же температуры, в его спектре одинаковые цвета имели одну и ту же интенсивность. Как же можно было рассчитывать объяснить природу спектральных линий, если непонятно происхождение самих спектров?

Поиски объяснения природы спектра света, излучаемого горячими телами, происходили в рамках определённой теоретической модели. Теория говорила: тело испускает свет потому, что состоит из огромного количества колеблющихся зарядов. Откуда взялась такая гипотеза? К этому времени уже было известно: свет представляет собой колеблющиеся электромагнитные волны, порождённые колебаниями зарядов. Эти представления возникли и утвердились благодаря исключительно успешному применению созданной Максвеллом теории электромагнетизма. Скорость дрожания осциллятора определяла его энергию и цвет испускаемого им света. Так что задача выглядела относительно простой: найти принцип, в соответствии с которым осциллятор дрожит именно так, чтобы породить наблюдаемый спектр. В 1900 году эту задачу удалось, наконец, решить Максу Планку, о котором мы уже рассказывали во введении.

Хотя квантовая теория и космология внутренне глубоко взаимосвязаны, истории их развития пока что не увязаны с хронологией Вселенной, которую эти науки помогли установить. В нашем рассказе мы до сих пор двигались хронологически – от рождения Вселенной до сегодняшнего дня, но при этом мы перепрыгнули через всю историю научных открытий, которая привела нас к этой хронологии. Мы уже познакомились с теми, кто разрабатывал теорию квантов – с Эйнштейном, Гейзенбергом, Паули, Нётер – но теперь пора вновь поговорить об отце квантовой физики Максе Планке. О человеке, который получил Нобелевскую премию по физике с формулировкой «в знак признания его заслуг в прогрессе физики, состоявших в открытии им квантов энергии».[37]

Пора взглянуть поглубже на то, как Макс Планк положил начало квантовой революции. В 1900 году он выдвинул гипотезу квантов: энергия существует в виде дискретных порций, а не в виде непрерывных волн.[38] В то время как другие физики безуспешно пытались создать механизм образования характерного спектра излучения, Планк начал с того, что назвал «математическими фокусами». Одним из последних и было предположение, что энергия каждого осциллятора не может принимать любое произвольное значение, а должна составлять определённое количество дискретных единиц. Выходило, что существует наименьшая единица энергии – квант. Планку не нравилась эта идея – она шла вразрез с классической физикой, в рамках которой он получил образование. Но эта идея работала. Вскоре оказалось, что она распространяется и на другие необъяснённые явления. Это и было рождением квантовой физики.



Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Космос. Прошлое, настоящее, будущее
Космос. Прошлое, настоящее, будущее

«Земля – колыбель человечества, но нельзя вечно жить в колыбели», – сказал когда-то К.Э. Циолковский. И сегодня достаточно оглянуться назад, чтобы понять, как он был прав! Полет Гагарина, выход в космос Алексея Леонова, высадка на Луну, запуски спутников и космических станций – хроника космической эры живет в памяти ее свидетелей. Много лет журнал «Наука и жизнь» рассказывал своим читателям о достижениях космонавтики, астрономии и астрофизики. О звездных событиях на ночном небе и в лабораториях ученых можно было узнать, листая его страницы. Сегодня авторы осмысляют почти столетний опыт этого космического путешествия. И знатоки космоса, и те, кто только его открывают, найдут в этой книге много интересного!

Антон Иванович Первушин , Владимир Георгиевич Сурдин , Ефрем Павлович Левитан , Николай Владимирович Мамуна

Астрономия и Космос