Читаем Как появилась Вселенная? Большие и маленькие вопросы о космосе полностью

Примерно в то же самое время начала проясняться структура атома. Тогда учёные знали только то, что у атомов есть плотное ядро с положительным зарядом, а электроны рассеяны вокруг него. Популярна была так называемая планетарная модель атома, в которой электроны обращались вокруг ядра по орбитам, как планеты вокруг Солнца. Даже сейчас, когда мы знаем, что эта картина не соответствует действительности, она в первом приближении остаётся полезной: в конце концов, мы и сегодня называем состояния электронов орбиталями. Невозможность такого представления об электронах была очевидна: движущиеся по орбитам частицы должны излучать энергию. Потеря энергии приведёт к тому, что электрон быстро потеряет скорость, почти мгновенно свалится на ядро – и атому придёт конец. Лучшая модель атома предполагала такую неустойчивость вещества, при которой оно вовсе не может существовать!

Перескочим к выводам

В то время мировым центром исследований по квантовой физике был Копенгаген – точнее, дом знаменитого датского физика Нильса Бора. Вдохновлённый квантовой гипотезой Планка, Бор предположил, что электрон не может занимать любую орбиту вокруг ядра – только определённые фиксированные орбиты. Так как электрон не может оказаться в пространстве между орбитами, он не излучает и не теряет энергию. Вещество снова стало устойчивым – по крайней мере, в теории.

Однако, хоть электрон и не может попадать в пространство между орбитами, он может менять орбиты – и делает это, совершая между ними скачки. Согласно модели Бора, он просто исчезает с одной орбиты и мгновенно возникает на другой. Однако между орбитами существует разность энергий. Куда же энергия электрона девается или откуда берётся? Она переходит в свет! Когда электрон перескакивает с более высокого энергетического уровня на более низкий, излучается квант энергии в виде света. Эта энергия связана с осцилляциями электрического поля, как и предсказывал Эйнштейн, когда применял квантовую гипотезу к свету. Таким образом, энергия света прямо пропорциональна его цвету. А так как существуют только определённые разрешённые уровни энергии, а все атомы одинакового вида идентичны, испускаемый ими свет всегда состоит из одного и того же дискретного набора цветов.

Например, если энергетически возбудить облако гелия, вскоре после этого оно начнёт испускать свет, но только определённых конкретных цветов – в определённых спектральных линиях. Энергии этих линий точно соответствуют разностям энергетических уровней, разрешённых моделью Бора. Разрешённые энергетические уровни различны для каждого элемента: у каждого из них своё ядро. Следовательно, «отпечатки пальцев» каждого элемента оставлены квантовыми «чернилами».

Верно и обратное: электрон может поглощать

свет. Однако тут дело обстоит более хитро. Чтобы перескочить с одного энергетического уровня на другой, более высокий, электрон должен поглотить строго определённое количество энергии. Обращая линии, наблюдаемые в спектре излучения, то есть посылая электронам свет точно такого же цвета, мы позволяем электронам переходить на орбиты с более высокими энергиями или можем освещать атомы светом всех цветов (тогда поглощены будут только те из них, которые соответствуют разрешённым энергетическим переходам, а остальные просто пройдут сквозь атомы незамеченными). Проводя наблюдения с другой стороны слоя атомов, мы увидим тот же свет, которым освещали эти атомы, но без спектральных линий, соответствующих поглощённым цветам. Так и образуются тёмные линии в спектре поглощения.

Мы успели поговорить о многом. Давайте остановимся и подведём итоги. Орбиты электронов в атомах квантованы, то есть соответствуют строго определённым значениям энергии: они не непрерывны, а дискретны. Чтобы электрон мог перескочить с орбиты с более низкой энергией на более высокоэнергетическую, атом должен поглотить фотон с соответствующей энергией. Это приводит тому, что в спектре появляется линия поглощения определённой частоты. Когда электроны спускаются с высокоэнергетической орбиты на низкоэнергетическую, атомы испускают фотоны определённой частоты, и в спектре излучения появляется эмиссионная линия.

Смотрим на Солнце (не пытайтесь повторить дома!)

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Космос. Прошлое, настоящее, будущее
Космос. Прошлое, настоящее, будущее

«Земля – колыбель человечества, но нельзя вечно жить в колыбели», – сказал когда-то К.Э. Циолковский. И сегодня достаточно оглянуться назад, чтобы понять, как он был прав! Полет Гагарина, выход в космос Алексея Леонова, высадка на Луну, запуски спутников и космических станций – хроника космической эры живет в памяти ее свидетелей. Много лет журнал «Наука и жизнь» рассказывал своим читателям о достижениях космонавтики, астрономии и астрофизики. О звездных событиях на ночном небе и в лабораториях ученых можно было узнать, листая его страницы. Сегодня авторы осмысляют почти столетний опыт этого космического путешествия. И знатоки космоса, и те, кто только его открывают, найдут в этой книге много интересного!

Антон Иванович Первушин , Владимир Георгиевич Сурдин , Ефрем Павлович Левитан , Николай Владимирович Мамуна

Астрономия и Космос