Квазары – одни из самых ярких известных нам объектов; мы видим их буквально с другого конца Вселенной. С помощью оборудованных спектроскопами телескопов астрономы смогли разгадать природу этих ослепительно ярких монстров. В центре квазара – чёрная дыра, масса которой может достигать миллиардов солнечных масс! Она и в самом деле чёрная, то есть невидимая, но окружена быстро вращающимся диском вещества. Разогретый огромными силами трения, диск ярко светится, освещая находящиеся в его окрестностях мощные газовые облака. Нагревание возбуждает атомы вещества, и электронные переходы в них порождают яркие эмиссионные линии – в частности, водорода и углерода.
Свет далёких квазаров преодолевает расстояния во много миллиардов световых лет, прежде чем дойти до нас. Но это пространство не совсем пустое. В межгалактическом пространстве разбросаны гигантские облака газа, преимущественно водорода, хотя, как и в большей части вещества во Вселенной, в них есть и добавки более тяжёлых элементов, образовавшихся в звёздах. Когда свет от квазара распространяется через пространство Вселенной, водородные облака «выедают» в нём волны определённых длин. Это приводит к появлению в спектрах квазаров набора линий поглощения, на положения которых влияет и вездесущее расширение Вселенной.
Квантование электронных орбит и наборы точных значений энергии, поглощаемой и излучаемой при переходах электронов с одной орбиты на другую, открыли перед астрономами новое окно во Вселенную. Теперь учёные могли определять химический состав тел, находящихся на другом конце Вселенной, что казалось настоящим научным чудом. И оказалось, что таинственная материя Вселенной, от ближайших звёзд до края наблюдаемой Вселенной, – не что иное, как обыкновенные «земные» химические элементы. А если вещество «там» не отличается от вещества «здесь», то, чтобы понимать, как изменяется и взаимодействует материя во Вселенной, можно использовать «земные» физические законы.
Предсказание Конта о «неземной» природе материи в дальних пределах Вселенной, повторим, не сбылось: телескопы, призмы, световые колебания и прыгающие с одной орбиты на другую электроны в конце концов принесли нам способность определять и анализировать состав небесных тел.
Откуда взялись вещества, из которых мы состоим?
В Части 1 мы рассматривали образование химических элементов в пламени Большого Взрыва. Этот процесс тормозила хрупкость дейтерия: она образовывала «бутылочное горлышко», из-за которого, когда в ходе нуклеосинтеза начинали формироваться элементы тяжелее лития, Вселенная оказывалась уже слишком холодной. Остывающий «суп» ранней Вселенной состоял из самых простых химических элементов, но сегодня их гораздо больше – от бария до урана. Элементы тяжелее водорода и гелия – основа нашего существования. Но откуда же они взялись?
После того, как первичный космический пожар потух, Вселенная погрузилась в жутковатую тьму. Звёзд в ней ещё не было. Горячий «суп» из фундаментальных частиц превратился в тёплый супчик из протонов – ядер водородных атомов, и ядер нескольких самых лёгких элементов. Были в нём, конечно, и свободные электроны, но температура оставалась слишком высокой, чтобы они могли объединяться с атомными ядрами. Они сделали это только спустя 400 000 лет – астрономы называют это событие
Во тьме продолжалась работа гравитации. Не забудем, что в ранней Вселенной вещество было не полностью однородным: из-за квантовых флюктуаций, происходивших ещё в эпоху инфляции, в нём оставались малые флюктуации плотности. Гравитация стягивала вещество к областям повышенной плотности и образовывала гигантские облака. Внутри них плотность продолжала расти по мере остывания газа, теряющего энергию посредством излучения. Облака делились на массивные фрагменты, которые сжимались под действием собственной тяжести, затем коллапсировали и образовывали первые скопления