В множественных реальностях многомировой интерпретации существуют наблюдатели с совершенно разным восприятием. Вы бросаете монетку, и она может выпасть орлом или решкой. Согласно многомировой теории, оба исхода одинаково
Заканчивая эту главу, мы явственно видим, как читатель изумлённо поднимает брови, ошарашенный идеей единой волновой функции Вселенной. Мы, конечно, отошли здесь от того, что некоторые назвали бы «настоящей наукой», к сфере научных спекуляций (некоторые сказали бы даже – «научных фантазий»). Но в действительности мы просто демонстрируем читателю, насколько мутной оказывается связь реальности с языком квантовой механики и общей теории относительности. Мы не знаем, действительно ли можно дать адекватное описание Вселенной в терминах волновой функции, или это чисто спекулятивная идея.
Здесь пора расстаться с концепцией универсальной волновой функции и вступить в представляющуюся безграничной область будущего, которое ожидает Вселенную. Она будет очень отличаться от Вселенной настоящего, и для того, чтобы представить, какой именно она может оказаться, придётся опираться на ещё более спекулятивные связи между квантовой механикой и общей относительностью.
В будущем гравитация и остальные силы продолжат борьбу за доминирование во Вселенной. И сейчас мы увидим, до чего необычной и причудливой она в конце концов может стать!
Часть 3
Квант космоса: будущее
Почему все мёртвые звёзды не становятся чёрными дырами?
Предшествующие главы показали нам, что у звёзд своя жизнь: они рождаются, живут, умирают. Как именно умирает звезда, зависит от её массы: ею определяется гравитационное сжатие звезды, а значит, и темп ядерных реакций в её недрах. Это означает, что некоторые звёзды
Посмотрим ещё раз на самые массивные звёзды. Как мы уже знаем, они могут завершать своё существование ослепительным и грандиозным взрывом сверхновой, который виден во всей Вселенной. Звезду разрывает на части натиск бесчисленных призрачных нейтрино. Посмотрим же снова на то, что в действительности происходит внутри такой звезды.
Когда массивная звезда стареет, ядерное горение в её сердцевине продолжается до тех пор, пока не начинает образовываться железо. Оно отличается от всех остальных элементов, образовывавшихся на предыдущих стадиях жизненного цикла звезды: при его термоядерном преобразовании в более тяжёлые элементы энергия не выделяется, а поглощается. Ядерное горение в недрах звезды внезапно останавливается, и направленное наружу давление излучения падает. Теперь нет препятствий неизбежному сжатию под действием гравитации, и звезда коллапсирует – обрушивается внутрь себя. Плотность и температура в её ядре стремительно взлетают вверх, железо при этих условиях мгновенно преобразуется в более тяжёлые элементы, при этом выделяется огромное количество нейтрино, и звезда взрывается, разлетаясь в окружающее пространство.
Взрывается, разлетается… но не вся. Плотность резко растёт в самом центре звёздного ядра, а с нею растёт гравитационное сжатие, ускоряя коллапс. В некоторый момент этот процесс проходит критическую точку, за которой гравитационное сжатие остановить невозможно ничем. Образуется чёрная дыра, обычно в несколько раз больше, чем Солнце. Это остаток массивной звезды, окружённый разлетающейся в разные стороны и постепенно тускнеющей оболочкой.
Для звёзд массой поменьше процесс развивается очень похожим образом, но, хотя в коллапсирующем звёздном ядре плотность и силы гравитации тоже взлетают, они не достигают критической точки, после которой образуется чёрная дыра. Коллапс может быть остановлен! Но это происходит только после того, как электроны вдавливаются в атомные ядра и в протоны, превращая их в нейтроны. Образуется сверхплотный шар, состоящий целиком из нейтронов. Такая нейтронная звезда – объект крайне странный, даже отдалённо не напоминающий что-либо, встречающееся на Земле.