Если звезда ещё поменьше, вроде нашего Солнца, её смерть ещё менее драматична. Сейчас Солнце прошло примерно половину своего жизненного пути, общая продолжительность которого оценивается в 11 миллиардов лет. Когда оно начнёт приближаться к концу этого срока, его внутренний состав будет постепенно меняться: в недрах начнут образовываться всё более и более тяжёлые элементы. Гравитационное сжатие в ядре Солнца недостаточно сильно для образования элементов вроде железа; изменения во внутренней структуре приведут к его раздуванию до огромных размеров – Солнце станет красным гигантом, поглотив Землю и даже Марс. Неустойчивые ядерные реакции в его недрах заставят его пульсировать всё сильнее и сильнее, и это кончится тем, что оно сбросит свои внешние оболочки. Тогда от него останется лишь обнажённое звёздное ядро.
Ядро мёртвой звезды – белый карлик – очень горячий и плотный остаток её сердцевины. Объект размером примерно с Землю и с массой порядка солнечной больше не сможет поддерживать какие-либо термоядерные реакции. Высокая температура обеспечит направленное наружу газовое давление, способное предотвратить гравитационный коллапс, по крайней мере, в течение некоторого времени. Очень горячий вначале, белый карлик в конце концов начнёт остывать, и через много миллиардов лет погаснет, став таким же холодным, как и вся окружающая Вселенная, – мёртвым остатком звезды, чёрным карликом. Время, необходимое белому карлику, чтобы остыть до фоновой температуры Вселенной, огромно – во много раз больше нынешнего возраста Вселенной. Поэтому сейчас, возможно, ни одного чёрного карлика ещё нет, но в будущей Вселенной их станет очень много.
Чтобы завершить этот рассказ, мы должны ещё рассмотреть случай звёзд самых малых масс. Это красные карлики – на сегодня самый многочисленный класс во Вселенной. Их конец будет совершенно лишён драматизма. При малых массах ядерные реакции внутри могут спокойно, медленно и устойчиво идти более 100 триллионов лет. Но когда рано или поздно ядерное горючее, водород, в их недрах иссякнет, этим крохотным звёздам не останется ничего, кроме как просто погаснуть и слиться с окружающей тьмой. Тёмные мёртвые красные карлики вначале будут ещё сохранять чуть-чуть тепла, которое обеспечит небольшое давление и предотвратит коллапс. Но в конце концов они тоже остынут, и вся их энергия рассеется в темноте Вселенной.
И всё же с этими мёртвыми звёздными остатками кое-что неясно. Почему после того, как направленное наружу давление вещества, вызванное ядерными реакциями, или остаточное тепловое давление прекращают действовать, они не уступают могучему гравитационному сжатию и не коллапсируют в чёрные дыры?
Вы, может быть, подумаете, что здесь дело обстоит так же, как с Землёй: она ведь тоже не коллапсирует, хоть в её ядре и не идут ядерные реакции. На Земле гравитационному сжатию противодействуют силы электромагнитного притяжения и отталкивания атомов – они достаточно велики, чтобы удержать планету от коллапса. Но масса мёртвых звёзд гораздо больше массы Земли, и силы гравитации превосходят давление, обеспечиваемое электромагнетизмом. Так откуда же берётся сила, не позволяющая произойти гравитационной катастрофе?
Вся надежда на кванты
Вернёмся к нашему рассказу о ранней Вселенной и обсуждению «дейтериевого бутылочного горлышка», препятствия на пути создания элементов в ходе остывания Вселенной. Вспомним, что дейтерий – основной двух-нуклонный строительный кирпичик материи, а остальные возможные двухнуклонные структуры – дипротон и динейтрон – неустойчивы и мгновенно распадаются. Причина этого связана с их спинами и ядерными силами, а точку ставит принцип исключения Паули, который требует, чтобы никакие два фермиона не оказывались в одном и том же состоянии. Говоря языком предыдущего раздела, фермионы не могут иметь идентичных волновых функций.