Читаем Как же называется эта книга? полностью

Этих четырех условий достаточно, чтобы ответить на вопросы логика: «Каждое ли истинное высказывание доказуемо в его системе? Каждое ли ложное высказывание опровержимо в его системе?» Кроме того, можно определить, является ли множество номеров всех истинных высказываний учтенным множеством, а также является ли учтенным множеством множество номеров всех ложных высказываний.

Как это сделать?

Решение. Перед вами не что иное, как гёделев остров из раздела А, но в ином «одеянии». Номера истинных высказываний играют роль рыцарей, номерам ложных высказываний отведена роль лжецов, доказуемые высказывания соответствуют признанным рыцарям, опровержимые – отъявленным лжецам. Учтенные роли заменяют собой клубы. Понятие множества, записанного на странице с заданным номером, играет роль клуба, названного по имени одного из обитателей острова. Экстраординарные числа – это не что иное, как номинабельные члены общины, а сопряженные числа являются аналогами друзей.

Чтобы решить задачу, прежде всего необходимо доказать аналог условия G.

Условие G. Для любого учтенного множества А найдется высказывание, истинное в том и только в том случае, если его номер принадлежит А.

Чтобы доказать условие G, выберем любое учтенное множество А. Пусть В – множество, заданное условием Н, n – номер страницы, на котором записано В в «Книге множеств». По условию Н если число n принадлежит В, то у него имеется сопряженное число h, принадлежащее множеству А, а если n не принадлежит В, то у него есть сопряженное число h, не принадлежащее А. Мы утверждаем, что высказывание X на h-й странице и есть то самое высказывание, которое требуется найти.

Высказывание X утверждает, что n – экстраординарное число, то есть что n принадлежит множеству В (так как множество В занесено на n-ю страницу «Книги множеств»). Если X истинно, то число n действительно принадлежит множеству В. Следовательно, h принадлежит А. Итак, если X истинно, то его номер (число h) принадлежит множеству А. Предположим теперь, что X ложно. Тогда число n не принадлежит В. Следовательно, сопряженное число h не принадлежит А. Итак, X истинно в том и только в том случае, если его номер принадлежит множеству А.

После того как условие G доказано, ответить на вопросы логика уже нетрудно. Дано, что множество номеров А всех доказуемых высказываний – учтенное множество. Следовательно, по условию С множество ~А всех чисел, не совпадающих с номерами доказуемых высказываний, также учтенное множество. Значит (по условию G), существует высказывание X, которое истинно в том и только в том случае, если его номер принадлежит множеству ~А. Но если номер высказывания X принадлежит множеству ~

А, то он не принадлежит множеству А, то есть высказывание X недоказуемо (так как множество А состоит из номеров доказуемых высказываний). Итак, X истинно в том и только в том случае, если X недоказуемо. Это означает, что либо X истинно и недоказуемо, либо X ложно и доказуемо. По условиям задачи ни одно ложное высказывание не доказуемо в системе. Следовательно, X должно быть истинным и недоказуемым в системе.

Построим теперь ложное высказывание, которое неопровержимо в системе. Пусть А – множество всех опровержимых высказываний. Воспользовавшись условием G, мы получим высказывание Y, истинное в том и только в том случае, если его номер совпадает с номером какого-нибудь опровержимого высказывания, то есть Y истинно в том и только в том случае, если Y опровержимо. Это означает, что Y либо истинно и опровержимо, либо ложно и неопровержимо. Первая альтернатива отпадает, так как опровержимое высказывание не может быть истинным. Следовательно, Y должно быть ложным, но неопровержимым в системе.

Перейдем теперь к остальным вопросам логики. Если бы множество номеров всех ложных высказываний было учтенным множеством, то существовало бы высказывание Z, которое было бы истинным в том и только в том случае, если бы его номер совпадал с номером какого-нибудь ложного высказывания. Иначе говоря, Z было бы истинным в том и только в том случае, если Z ложно, что невозможно. (Z напоминало бы высказывание «это высказывание ложно».) Следовательно, множество номеров всех ложных высказываний – неучтенное множество. Из условия С следует, что множество номеров истинных высказываний также не является учтенным множеством.

270. Теорема Гёделя

Предыдущая задача представляет собой не что иное, как упрощенный вариант знаменитой теоремы Гёделя о полноте.

Перейти на страницу:

Все книги серии Просто о необычном и сложном

Похожие книги

Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Эволюция человека. Книга II. Обезьяны, нейроны и душа
Эволюция человека. Книга II. Обезьяны, нейроны и душа

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу.Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Ваша жизнь в ваших руках. Как понять, победить и предотвратить рак груди и яичников
Ваша жизнь в ваших руках. Как понять, победить и предотвратить рак груди и яичников

Рак груди – непонятная и пугающая тема. Суровые факты шокируют: основная причина смерти женщин от 25 до 75 лет – различные формы рака, и рак молочной железы – один из самых смертоносных. Это современное бедствие уже приобрело характер эпидемии. Но книга «Ваша жизнь в ваших руках» написана не для того, чтобы вы боялись. Напротив, это история о надежде.Пройдя путь от постановки страшного диагноза к полному выздоровлению, профессор Плант на собственном опыте познала все этапы онкологического лечения, изучила глубинные причины возникновения рака груди и составила программу преодоления и профилактики этого страшного заболевания. Благодаря десяти факторам питания и десяти факторам образа жизни от Джейн Плант ваша жизнь действительно будет в ваших руках.

Джейн Плант

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина / Здоровье и красота / Дом и досуг / Образование и наука