Читаем Как же называется эта книга? полностью

В 1931 г. Курт Гёдель совершил поразительное открытие. Он установил, что математическую истину в некотором смысле нельзя формализовать полностью. Гёдель доказал, что в математической системе, принадлежащей широкому классу систем, всегда найдется утверждение, недоказуемое (то есть невыводимое из аксиом системы), несмотря на свою истинность! Следовательно, ни одной аксиоматической системы, сколь бы остроумно она ни была устроена, не достаточно для доказательства всех математических истин. Гёдель впервые доказал свою теорему для системы “Principia Mathematica” Уайтхеда и Расселла, но предложенное им доказательство, как я уже говорил, допускает перенос и на многие другие системы. Во всех этих системах существует вполне определенное множество выражений, называемых предложениями, которые подразделяются на истинные и ложные. Некоторые истинные предложения приняты за аксиомы системы. Точный перечень правил вывода позволяет доказывать (выводить из аксиом) одни предложения и опровергать другие. Помимо предложений система содержит имена различных множеств (целых и положительных) чисел. Любое множество чисел, наделенное в рассматриваемой системе именем, можно назвать именуемым, или определимым, множеством системы (в предыдущей задаче такие множества скрывались под псевдонимом «учтенные множества»). Весьма существенно, что все предложения можно перенумеровать, а все определимые множества перечислить по порядку. Это означает, что математическая система удовлетворяет условиям E1, Е2, С и Н нашей задачи. (Номер, присваиваемый каждому предложению, – в задаче мы называли его просто номером – в математической логике известен под названием гёделевого номера предложения.) Доказать, что система удовлетворяет условиям С и Н, очень просто. Доказательство того, что система удовлетворяет условиям E1 и Е

2, в принципе несложно, но довольно громоздко. Коль скоро доказано, что система удовлетворяет всем четырем условиям, они [10]позволяют построить предложение, которое истинно, но недоказуемо (невыводимо) в данной системе.

Это предложение можно представлять себе как некоторое предложение X, содержащее утверждение о своей недоказуемости. Такое предложение действительно должно быть истинно, но недоказуемо (подобно тому как житель острова G, утверждавший, что он непризнанный рыцарь, действительно был рыцарем, но не был признанным рыцарем).

Возможно, вы спросите: но если известно, что предложение X (содержащее утверждение о своей недоказуемости) истинно, то почему бы не принять его за новую аксиому? Разумеется, мы можем пополнить список аксиом системы еще одной аксиомой, но расширенная система также будет удовлетворять условиям E1

, Е2, С и Н. Следовательно, в ней найдется другое предложение X1, которое будет истинным, но недоказуемым в расширенной системе. Таким образом, хотя расширенная система позволяет доказать больше истинных предложений, чем старая, тем не менее и в ней доказать все истинные предложения невозможно.

Должен сказать, что мое изложение метода Гёделя отличается от первоначального доказательства теоремы, предложенного самим Гёделем. Основное отличие состоит в том, что я использую понятие истинности, отсутствующее у Гёделя. Действительно, в первоначальном виде теорема Гёделя не содержит утверждения о существовании в системе истинного, но недоказуемого (невыводимого) предложения. В ней говорится нечто иное: при некотором правдоподобном допущении относительно системы в ней непременно существует предложение (и Гёдель демонстрирует такое предложение), которое в рамках системы невозможно ни доказать, ни опровергнуть.

Понятие истинности было строго формализовано логиком Альфредом Тарским. Он доказал, что для математических систем, удовлетворяющих условиям теоремы Гёделя, множество гёделевых номеров истинных предложений неопределимо в системе. Иногда этот результат формулируют так: «Во всякой достаточно мощной системе истинность предложений системы неопределима в рамках самой системы».

271. Последнее слово

Рассмотрим следующий парадокс:


Это предложение недоказуемо.


Парадокс состоит в следующем. Если это предложение ложно, то неверно, что оно недоказуемо. Следовательно, оно доказуемо, а это означает, что оно истинно. Итак, предположив, что это предложение ложно, мы пришли к противоречию. Значит, оно должно быть истинно.

А теперь будьте внимательны! Я доказал, что предложение, набранное курсивом, истинно. Но в истинном предложении говорится о том, что есть на самом деле. Значит, оно недоказуемо. Как же мне удалось доказать его?

Перейти на страницу:

Все книги серии Просто о необычном и сложном

Похожие книги

Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Эволюция человека. Книга II. Обезьяны, нейроны и душа
Эволюция человека. Книга II. Обезьяны, нейроны и душа

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу.Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Ваша жизнь в ваших руках. Как понять, победить и предотвратить рак груди и яичников
Ваша жизнь в ваших руках. Как понять, победить и предотвратить рак груди и яичников

Рак груди – непонятная и пугающая тема. Суровые факты шокируют: основная причина смерти женщин от 25 до 75 лет – различные формы рака, и рак молочной железы – один из самых смертоносных. Это современное бедствие уже приобрело характер эпидемии. Но книга «Ваша жизнь в ваших руках» написана не для того, чтобы вы боялись. Напротив, это история о надежде.Пройдя путь от постановки страшного диагноза к полному выздоровлению, профессор Плант на собственном опыте познала все этапы онкологического лечения, изучила глубинные причины возникновения рака груди и составила программу преодоления и профилактики этого страшного заболевания. Благодаря десяти факторам питания и десяти факторам образа жизни от Джейн Плант ваша жизнь действительно будет в ваших руках.

Джейн Плант

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина / Здоровье и красота / Дом и досуг / Образование и наука