Читаем Кентерберийские головоломки полностью

Трудность состоит в том, чтобы войти в сад, отмеченный звездочкой, поскольку если мы уйдем из сада В,то нам перед уходом придется войти туда второй раз, что запрещено условием. Трюк состоят в том, что войти в сад со звездочкой следует, не покидая при этом другой сад. Представьте себе, что шут, подойдя к проходу (пунктирная линия делает здесь острый угол), хотел спрятаться в саду со звездочкой, но, уже поставив одну ногу на эту звездочку, обнаружил, что тревога была напрасной. Он с полным основанием, мог сказать: «Я вошел в сад со звездочкой, ибо я перенес в него одну ногу и часть корпуса, но я не вошел в другой сад дважды, поскольку, войдя туда однажды, я не покидал его до тех пор, пока не вышел через ворота В». Это единственный возможный ответ, и, конечно, шут имел в виду именно его.


54. Решение этой головоломки лучше всего объяснить с помощью рисунка. Если шут положил свои 8 досок указанным здесь способом через угол, образованный канавой, то он сумел довольно просто перебраться через нее.



Таким образом королевский шут мог преодолеть все трудности и благополучно бежать, что он, как нам сообщает, и сделал.

Как совершались различные трюки на рождественском вечере у сквайра

Запись одного из ежегодных «головоломных рождественских вечеров» у сквайра Дэвиджа, сделанная одной из юных родственниц этого старого джентльмена, которая часто проводила веселые рождественские праздники в Стоук Коурси-Холле, не дает разгадки тайн. Поэтому я приведу мои собственные ответы на все головоломки и попытаюсь сделать их по возможности понятнее для тех, кто более или менее новичок в таких делах.


65.У мисс Чарити Локайер был, очевидно, в запасе какой-то трюк, и, мне кажется, что скорее всего он состоял в следующем. Она предложила разложить десять кусков сахару по трем чашкам так, чтобы в каждой оказалось нечетное число кусков.



На рисунке приведен возможный ответ, а цифры на чашках означают число кусков, положенных в каждую из них по отдельности. Помещая чашку, содержащую один кусок, в чашку, содержащую два куска, мы можем проверить, что действительно каждая из них содержит нечетное число кусков. В оставшейся чашке 7 (нечетное число) кусков. Итак, в одной чашке находится 1 кусок, во второй – 3 и в третьей – 7 кусков. Очевидно, что если чашка содержат другую чашку, то в ней находится и содержимое этой чашки.

Всего имеется пятнадцать различных решений этой головоломки:



Перше два числа в тройках показывают число кусков соответственно во внутренней и внешней чашках, вставленных друг в друга. Стоит отметить, что внешняя чашка этой пары сама по себе может быть пустой.


56.·Трюк в данной головоломке заключался в следующем. Из одиннадцати монет удаляется пять, затем добавляются четыре монеты (к этим уже удаленным), и у вас получается девять монет – во второй кучке удаленных монет!


57. Фермер Роуз послал на рынок ровно 101 гуся· Джейбз сначала продал мистеру Джасперу Тайлеру половину стада и полгуся сверх того (то есть 50 1/2 + 1/2 = 51, оставив 50 гусей); затем он продал фермеру Эйвенту треть остатка и еще треть гуся (то есть 16 2/3 +1/3 =17, оставив 33 гуся); потом он продал вдове Фостер четверть остатка и еще три четверти гуся (то есть 8 1/4 + 3/4 = 9, оставив 24 гуся); далее он продал Нэду Кольеру пятую часть остатка из еще подарил пятую часть гуся (то есть 4 4/5 + 1/5 = 5, оставив 19 гусей). Этих 19 гусей он и привез назад.


58.

 Эта небольшая шутка майора Тренчарда также представляет собой головоломку с трюком, а плутовское выражение лица крайнего справа мальчика с цифрой 9 на спине ясно показывало, что он посвящен в тайну.



Я не сомневаюсь (вспомните намек майора, что на числа надо «правильно смотреть»), что его ответ вы видите на рисунке, где мальчик 9 стоит на голове, отчего число на его спине превращается в 6. Это дает общую сумму 36 (четное число), так что, поменяв местами мальчиков 3 и 4 с 7 и 8, мы получаем 1, 2, 7, 8 и 5, 3, 4, 6, а это в каждом случае дает сумму, равную 18. Существуют три других разбиения мальчиков на группы, удовлетворяющих нужному условию: 1, 3, 6, 8–2, 4, 5, 7; 1, 4, 6, 7–2, 3, 5, 8 и 2, 3, 6, 7–1, 4, 5, 8.


59. На рисунке показано решение данной головоломки. При наложенных условиях оно единственное. Начиная с верхнего пудинга, украшенного остролистом, мы касаемся всех пудингов за 21 прямолинейный проход, пробуя дымящийся пудинг в конце десятого прохода и заканчивая вторым пудингом, украшенным остролистом.

Здесь мы имеем пример невозвратного пути шахматной ладьи между максимально удаленными клетками, Ибо если бы мы пожелали посетить каждую клетку по одному и только одному разу, а начать и закончить путь в противоположных концах одной и той же диагонали, то это оказалось бы невозможным.



Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика