Физикам и инженерам нужно сильно постараться, чтобы удержать состояние квантового запутывания у двух изготовленных в лаборатории частиц со связанными характеристиками, прежде чем произойдет декогеренция (рассогласованность) в результате взаимодействия с макроокружением, и чистое состояние исчезнет. У малиновки же нет ни лаборатории, ни аппаратуры, ни сверхнизких температур, однако ее организм как-то умудряется удерживать когеренцию на столько времени, чтобы суперпозиция успела сработать.
По сегодняшним предположениям физиков, малиновка ориентируется в магнитном поле с помощью особого белка в клетках глаза. Этот белок под названием криптохром и служит молекулярным механизмом, где происходит изготовление запутанных электронных пар. Они играют роль антенн: один из этих запутанных электронов пары чувствует изменение магнитного поля (оно меняет спин электрона) и телепортирует свои «ощущения» своему «близнецу». А уже тот вызывает цепочку биохимических реакций, которая и воспринимается сознанием малиновки как сообщение о том, как нужно скорректировать курс. Иными словами, малиновки просто-напросто видят магнитное поле.
Это очень тонкое воздействие. Когда исследователи внесли во внешнее поле помеху, которая по мощности составляла лишь 0,3 % от мощности магнитного поля планеты, птички теряли способность к ориентации в пространстве. Столь слабое воздействие могут почувствовать только квантовые системы. Это, собственно, и навело на мысль о том, что в ориентации пернатых задействованы именно квантовые механизмы. Подсчитали, что для того, чтобы система работала, малиновке нужно удерживать чистое состояние квантовой системы до его разрушения аж целых 100 микросекунд, что было для ученых людей настоящим потрясением – это очень долго! Нам бы так для наших квантовых компьютеров!
Именно магниточувствительные химические реакции в организме наподобие тех, что помогают малиновке, ответственны за то, что многие люди чувствуют магнитные бури и вообще подвержены влиянию космофизических факторов: солнечных бурь, фаз Луны и пр. Раньше ученые в такое не верили, ведь отсюда один шаг до астрологии! Разве столь слабые поля, как магнитное поле нашей планеты, которое на два порядка слабее магнита на холодильнике, может влиять на химические реакции, разрывать связи между молекулами? Здесь нужны силы в миллионы раз мощнее! Но слабое магнитное поле планеты действует по принципу реле, когда малый сигнал запускает мощные многоамперные токи.
Короче говоря, в конце 60-х годов прошлого века были открыты короткоживущие пары радикалов, чувствительных именно к слабым магнитным взаимодействиям. Такие взаимодействия не разрывают связи между атомами напрямую, а действуют более тонко – через спиновый механизм.
Радикал – это большая молекула с неспаренным электроном в одном из атомов. Мы еще со школы помним, что спин электрона является полуцелым и может иметь знак как плюс, так и минус, то есть +1/2 или -1/2. Обычно его рисуют в виде стрелки, направленной верх ↑ или вниз ↓.
Спин – это магнитный момент электрона, и потому стрелка спина может колебаться в зависимости от внешнего магнитного поля. Чтобы химическая реакция прошла, электроны неспаренных орбит взаимодействующих молекул должны иметь противоположные спины по принципу Паули. (Принцип Паули, который мы в школе проходили, запрещает электронам с одинаковым спином сидеть на одной орбите.) Соответственно, управляя с помощью слабенького внешнего поля спинами электронов, можно изменять вероятность прохождения химической реакции. И когда в результате определенной реакции образуются два радикала, их неспаренные электроны оказываются запутанными. Ну, а остальное было описано выше (один из них играет роль антенны, чувствующей поле и передающей свое состояние напарнику)…
Открытие у малиновки квантового компаса ознаменовало собой рождение новой науки – квантовой биологии. Науки, изучающей поразительные вещи – связь живого с квантовым миром. Ранее биохимики не могли даже представить, что у живого организма может быть некий молекулярный механизм, позволяющий ощущать воздействие магнитного поля, да еще столь слабого, как магнитное поле Земли. Это казалось столь же немыслимым, как телепатия, предвидение и телекинез. А теперь понятно, что подобного рода «квантовых диодов», встроенных в «электросхемы» живых организмов, может быть множество.
Квантовая биология – дисциплина столь молодая, что, когда в 2012 году был проведен всемирный симпозиум по квантовой биологии, вся наука уместилась в одной маленькой аудитории.
Чему же учит нас квантовая биология?
Например, тому, что известное нам со школьной скамьи хрестоматийное явление под названием фотосинтез было бы невозможно без квантовых эффектов: рожденный солнечным фотоном импульс возбуждения в зеленом листе распространяется по клеткам в состоянии суперпозиции, и поддерживается это квантовое состояние без редукции ровно столько, сколько нужно для доставки импульса в цель. Как у той же малиновки.