Читаем Личность и Абсолют полностью

§ 112. Трансцедентное число (в связи с трансцедентными функциями).

1. Линдеман обобщил бывшую до него теорему о невозможности для числа е быть корнем уравнения, в котором коэффициенты и показатели являются целыми рациональными числами. А именно, он доказал, что в этом случае коэффициенты могут быть любыми, а показатели — различными между собою алгебраическими числами. Частным случаем этой теоремы Линдемана оказывается то, что в уравнении

е х= а

числа х и а не могут быть одновременно алгебраическими числами (кроме х = 0, т. е. а= 1). Иначе е в алгебраической степени было бы алгебраическим числом, что после теоремы исключается. Значит, если мы имеем показательную функцию от алгебраического аргумента, то она оказывается числом трансцедентным. Точно так же натуральный логарифм алгебраического числа обязательно есть тоже трансцедентное число. Кроме того, А. Гельфонд доказывает, что 1

, где —алгебраическое число, тоже трансцедентно  [899]. Но из соотношения 1+ e ni= 0 следует, что (—1)' = е –n. Следовательно, по Гельфонду, е –п
тоже трансцедентно. Но тогда трансцедентно и е п.

2. Все эти заключения (и подобные им) таят под собою ряд неосознанных интуиций, без вскрытия которых невозможно философское понимание предмета.

а) Прежде всего зададим себе вопрос: что значит вообще степень Трансцедентного числа? Как будет особо разъяснено ниже, в § 118, возведение числа в степень есть его алогический органический рост. Возвести число в степень—это значит повторить его как именно его самого в каждом его отдельном моменте, воспроизвести его самого в каждом отдельном моменте. Органический рост, это и есть возведение в степень. Но как же это возможно в отношении трансцедентного числа? Ведь трансцедентное число уже вмещает в себе все свое инобытие, т. е. все свои возможные инобытийные самовоспроизведения. О каком же еще воспроизведении может идти речь?

Тут мы должны вспомнить, что трансцедентное число вовсе не есть застывшая в себе данность, хотя бы эта данность и была полной. Трансцедентное число есть переполнение числа своим инобытием, излияние числа в инобытие, выразительная эманация числа. Отсюда— степень трансцедентного числа только и можно понимать как результат его эманации в инобытии, т. е. как установление какого–нибудь нового числа, инобытийного в отношении данной трансцедентности.

b) Рассуждая таким образом, мы можем получить—в качестве результата эманации трансцедентного, — во–первых, опять все такое же трансцедентное число. Что это значит? Это значит, что из данной трансцедентности эманировало бытие, которое, ставши таковым (т. е. инобытием в отношении данной трансцедентности), само возымело в свою очередь трансцедентные особенности и само стало способным к порождению эманаций. Результатом эманации может быть, во–вторых, и алгебраическое число. Когда трансцедентное число возводится в трансцедентную степень, мы получаем алгебраическое число. Повидимому, тут происходит двойная эманация: с одной стороны, эманирует из данной трансцедентности новая, инобытийная, а с другой— поскольку первоначальная трансцедентность возводилась в трансцедентную же степень, то данной эманации хватило не только на продуцирование новой трансцедентности, но и на дальнейшее продуцирование еще алгебраического числа из этой новой трансцедентности. Наконец, результатом эманации может быть и комплексное число. Здесь мы, кажется, тоже имеем дело с двойной эманацией, когда эманированный продукт не только есть инобытие, трансцедентное или алгебраическое, но это инобытие еще и приняло новую форму, именно комплексную.

Итак, та или иная степень трансцедентного числа е есть не что иное, как тот или иной результат эманации числовой трансцедентности.

Изучим некоторые явления из этой области.

3. а) Число е, возведенное в вещественную степень и легко представляемое в виде бесконечного ряда типа Маклорена, для нас менее интересно. Гораздо интереснее здесь мнимые степени. Возводя трансцедентное число в мнимую степень, мы не получаем никакой несуразности и никакого бесполезного нагромождения схоластических терминов, как это всегда кажется неискушенным в диалектике мыслителям. Тут на помощь приходит сама математика, давая замечательные построения в виде Эйлерового представления тригонометрических функций с мощью мнимых степеней е. Схоластика оборачивается рядом самых обыкновенных и даже самых элементарных математических построений.

b) Именно, если мы возьмем e xi, разложим его в ряд, отделим вещественные и мнимые члены, то вещественная часть окажется не чем иным, как разложением cosx, а коэффициент при мнимой части—не чем иным, как разложением sin*; и мы, таким образом, получаем:

e xi=cos x + I sin x.

Уже это одно замечательное построение способно вызвать у философствующего некоторый восторг ума. В самом деле, ведь мы же только возводили е в мнимую степень. Откуда же это вдруг всплыли тригонометрические функции?

Прежде всего формулируем, что такое мнимая степень трансцедентности, — независимо ни от каких формул Эйлера.

Перейти на страницу:

Похожие книги

Этика Спинозы как метафизика морали
Этика Спинозы как метафизика морали

В своем исследовании автор доказывает, что моральная доктрина Спинозы, изложенная им в его главном сочинении «Этика», представляет собой пример соединения общефилософского взгляда на мир с детальным анализом феноменов нравственной жизни человека. Реализованный в практической философии Спинозы синтез этики и метафизики предполагает, что определяющим и превалирующим в моральном дискурсе является учение о первичных основаниях бытия. Именно метафизика выстраивает ценностную иерархию универсума и определяет его основные мировоззренческие приоритеты; она же конструирует и телеологию моральной жизни. Автор данного исследования предлагает неординарное прочтение натуралистической доктрины Спинозы, показывая, что фигурирующая здесь «естественная» установка человеческого разума всякий раз использует некоторый методологический «оператор», соответствующий тому или иному конкретному контексту. При анализе фундаментальных тем этической доктрины Спинозы автор книги вводит понятие «онтологического априори». В работе использован материал основных философских произведений Спинозы, а также подробно анализируются некоторые значимые письма великого моралиста. Она опирается на многочисленные современные исследования творческого наследия Спинозы в западной и отечественной историко-философской науке.

Аслан Гусаевич Гаджикурбанов

Философия / Образование и наука
Осмысление моды. Обзор ключевых теорий
Осмысление моды. Обзор ключевых теорий

Задача по осмыслению моды как социального, культурного, экономического или политического феномена лежит в междисциплинарном поле. Для ее решения исследователям приходится использовать самый широкий методологический арсенал и обращаться к разным областям гуманитарного знания. Сборник «Осмысление моды. Обзор ключевых теорий» состоит из статей, в которых под углом зрения этой новой дисциплины анализируются классические работы К. Маркса и З. Фрейда, постмодернистские теории Ж. Бодрийяра, Ж. Дерриды и Ж. Делеза, акторно-сетевая теория Б. Латура и теория политического тела в текстах М. Фуко и Д. Батлер. Каждая из глав, расположенных в хронологическом порядке по году рождения мыслителя, посвящена одной из этих концепций: читатель найдет в них краткое изложение ключевых идей героя, анализ их потенциала и методологических ограничений, а также разбор конкретных кейсов, иллюстрирующих продуктивность того или иного подхода для изучения моды. Среди авторов сборника – Питер Макнил, Эфрат Цеелон, Джоан Энтуисл, Франческа Граната и другие влиятельные исследователи моды.

Коллектив авторов

Философия / Учебная и научная литература / Образование и наука