Читаем Личность и Абсолют полностью

Мы уже знаем (§ 111а), что степень указывает на органический рост возводимого в степень. Стало быть, трансцедентное должно органически расти и самовоспроизводиться. В какую же сторону оно должно расти? Об этом говорит мнимый показатель степени. Но что такое мнимость? Мнимость есть чисто смысловое оформление вещи (§ 104). Значит, трансцедентность должна расти в сторону своего чисто смыслового оформления; трансцедснтнос испускает из себя эманацию чисто смыслового оформления и воспроизводит себя в нем, как бы покрывает себя прочной броней оформления, облекается в некое внешнее одеяние, облекается выразительным и твердо ощутимым телом. Выразительнотелесная форма как результат эманации трансцедентного—вот что такое мнимая степень трансцедентного.

Что же теперь дает тут математика?

с) Аналитический вывод связи тригонометрических функций с мнимой степенью е указан выше, и он не только внешне элементарен, но он в такой же степени и загадочен и требует какого–нибудь осмысленного уразумения. Нужно сознаться, что математическая схоластика и формализм в данном вопросе особенно постарались сделать свой предмет непонятным, в результате чего формулы Эйлера, можно сказать, просто никто из математиков не понимает, хотя вывести их доступно школьнику.

Попробуем представить себе мнимую степень е геометрически (Клиффорд). Для этого представим себе, что радиус круга ОР равный единице, своим вращением образует угол QOP, величина которого очень мала. Так как дуга QP–OP· LQOP, а ОP по условию, равно единице, то длина QP, возникшая в результате вращения радиуса ОР есть не что иное, как просто числовая величина угла QOP. Здесь, однако, мы должны вспомнить то, что мы вывели из гауссовского представления мнимых величин (§ 106). Именно, эту величину QP мы можем представить не прямо как таковую, а с точки зрения радиуса OP, т. е. мы будем считать, что в результате своего вращения радиус О не только поворачивается на определенный угол, но еще и получает некоторое приращение QP, растягивается на величину QP. Поскольку угол QOP очень мал, мы можем QP считать перпендикуляром к ОР и тогда, по Гауссу, это QP окажется мнимой величиной. Итак, QP— LQOP· L А принимая угол QOP тоже за единицу, мы можем сказать: если радиус круга, равный единице, поворачивается на угол, тоже равный единице, то он испытывает растяжение на -1, что и является длиной образуемой здесь дуги данной окружности. И если угол у нас есть х, то растяжение, очевидно, равняется -1. Но какое же имеет сюда отношение e?

Известно, что когда одна величина равномерно помножается при одинаковых приростах другой, то говорят, что она вырастает логарифмически. Если взять отношение прироста первой величины при увеличении второй на единицу к самой величине, то по этому отношению можно судить о размерах логарифмического возрастания. Когда мы постепенно увеличиваем угол и соответственно получаем увеличение радиуса xi, то ясно, что xi растет здесь логарифмически. То же находим мы в т. н. логарифмической спирали. Изучение логарифмической спирали как раз и дает нам искомое решение вопроса.

Оказывается, что если мы станем искать в логарифмической спирали результат поворота луча–единицы на угол–единицу, то при логарифмической скорости возрастания этого луча–единицы (равной котангенсу углов, по которым логарифмическая спираль называется также равномерной) результат этот будет как раз е х

, где —число угловых единиц поворота, есть то, во что превращается начальный луч, равный единице, когда мы, вращая его на угол, равный угловым единицам, получаем в результате этих вращений постепенное его логарифмическое возрастание, рисующее нам структуру логарифмической спирали. Следовательно, е 1есть тоже результат поворота нашего радиуса OA на i угловых единиц, потому что быстрота логарифмического возрастания ОР, отнесенная к угловой единице, есть i. Результат же поворота на угол равен, очевидно, e xi
.

4. Все это математическое рассуждение, однако, будет совершенно слепым, если мы не предпримем здесь философской интерпретации.

а) Прежде всего, достойно всяческого приветствия толкование окружности при помощи мнимых величин. Когда мы в § 107 говорили о перспективном оформлении, которое приносят с собою мнимые и комплексные числа, то это, конечно, должно было производить на неподготовленных впечатление насильственно притянутых фактов. Не угодно ли теперь воочию убедиться в правильности произведенного там исследования?

Перейти на страницу:

Похожие книги

Этика Спинозы как метафизика морали
Этика Спинозы как метафизика морали

В своем исследовании автор доказывает, что моральная доктрина Спинозы, изложенная им в его главном сочинении «Этика», представляет собой пример соединения общефилософского взгляда на мир с детальным анализом феноменов нравственной жизни человека. Реализованный в практической философии Спинозы синтез этики и метафизики предполагает, что определяющим и превалирующим в моральном дискурсе является учение о первичных основаниях бытия. Именно метафизика выстраивает ценностную иерархию универсума и определяет его основные мировоззренческие приоритеты; она же конструирует и телеологию моральной жизни. Автор данного исследования предлагает неординарное прочтение натуралистической доктрины Спинозы, показывая, что фигурирующая здесь «естественная» установка человеческого разума всякий раз использует некоторый методологический «оператор», соответствующий тому или иному конкретному контексту. При анализе фундаментальных тем этической доктрины Спинозы автор книги вводит понятие «онтологического априори». В работе использован материал основных философских произведений Спинозы, а также подробно анализируются некоторые значимые письма великого моралиста. Она опирается на многочисленные современные исследования творческого наследия Спинозы в западной и отечественной историко-философской науке.

Аслан Гусаевич Гаджикурбанов

Философия / Образование и наука
Осмысление моды. Обзор ключевых теорий
Осмысление моды. Обзор ключевых теорий

Задача по осмыслению моды как социального, культурного, экономического или политического феномена лежит в междисциплинарном поле. Для ее решения исследователям приходится использовать самый широкий методологический арсенал и обращаться к разным областям гуманитарного знания. Сборник «Осмысление моды. Обзор ключевых теорий» состоит из статей, в которых под углом зрения этой новой дисциплины анализируются классические работы К. Маркса и З. Фрейда, постмодернистские теории Ж. Бодрийяра, Ж. Дерриды и Ж. Делеза, акторно-сетевая теория Б. Латура и теория политического тела в текстах М. Фуко и Д. Батлер. Каждая из глав, расположенных в хронологическом порядке по году рождения мыслителя, посвящена одной из этих концепций: читатель найдет в них краткое изложение ключевых идей героя, анализ их потенциала и методологических ограничений, а также разбор конкретных кейсов, иллюстрирующих продуктивность того или иного подхода для изучения моды. Среди авторов сборника – Питер Макнил, Эфрат Цеелон, Джоан Энтуисл, Франческа Граната и другие влиятельные исследователи моды.

Коллектив авторов

Философия / Учебная и научная литература / Образование и наука