b) Анализируя его с диалектической точки зрения, мы находим следующее. 1) Речь идет прежде всего о синусе. Синус есть мера раскрытия, развертывания угла. Синус свидетельствует о степени раздвинутости сторон, образующих угол; он раскрывает то содержание, которое кроется между сторонами угла. 2) Если в этом пределе есть длина дуги, a sinx есть синус угла, соответствующего этой дуге, то вполне правильно будет признать, что есть проводимая граница, a sinx есть мера развертываемого внутреннего содержания, получающегося в результате проведения этой границы. 3) Далее, берется отношение между синусом угла и длиной соответствующей дуги; и отношение это берется к тому же не просто как такое, но как предельное отношение, т. е. при том условии, что стремится к 0. И длина дуги, и синус соответствующего угла берутся в самом их зарождении или, что все равно, в самом их окончании, т. е. вообще в процессе их становления. 4) И утверждается: этот предел равен 1. Другими словами, sinx их в пределе оказываются равными одно другому, раз отношение между ними в пределе равно 1. Как раз это самое и утверждалось выше, когда говорилось, что в пределе ограничивающее и ограничиваемое вполне тождественны, что проведение внешней границы и раскрытие внутреннего содержания, в смысле предельных процессов, ничем не отличаются одно от другого.
9. а) Учением о пределе отношения синуса угла к длине соответствующей дуги вполне ясно демонстрируется диалектическое учение о становлении границы как о моменте, составляющем антитезис энергийно–выявленной единичности. Но становление должно стать ставшим, чтобы диалектика в данном пункте получила завершение. Ставшее, говорили мы, в сфере смысла есть фигурность смысла. Ставшее, кроме того, т. е. фигурность смысла, мы берем пока не в абсолютной чистоте и самодеятельности, но вместе со стихией энергийно–выявленной единичности. Это ставшее оказывается, таким образом, ставшим границы в условии такого взаимоотношения ее с размерами очерченного границей содержания
[897]. Здесь уже не становящаяся, внешняя граница в ее взаимоотношении с очерчиваемым внутренним содержанием, но законченная, замкнутая граница в ее взаимоотношении со всей целостью очерченного внутреннего содержания. В математике этой диалектической конструкции соответствует число , определяемое как отношение длины окружности к ее диаметру. Что окружность есть замкнутая граница, это очевидно. Что диаметр указывает на степень раскрытия и растворения или, грубо говоря, просто на размеры окружности, это тоже само собой понятно. Стало быть, и есть как раз отношение законченной внешней ограниченности к очерченному внутреннему [898]содержанию, т. е. та самая концепция предела, которая является синтетическим завершением энергийной единичности, получившей, наконец, цельное очертание, сопоставленное со своим внутренним инобытием.b) Интересен также еще и другой вид представления как предела, а именно—как площади круга с радиусом, равным 1. Как мы знаем из элементарной геометрии, площадь / правильного вписанного в круг 2m–угольника равняется
Отсюда
если есть количество удвоений сторон вписанного w–угольника. Если сторона квадрата равняется r2, т. е., по условию, 2, а, следовательно, площадь его = 2, то отсюда легко вычисляется и само , равное, как известно, 3,14159265…
с) Это представление как площади круга с радиусом, равным единице, подчёркивает в момент выявленности внутреннего содержания, как бы дорастания его до степени явленности, до степени полной и законченной очерченности. Единица в диалектическом смысле есть полагание как таковое. Провести окружность каким бы то ни было радиусом—значит дать некую фигурность, ориентированную на неви–г димый центр, и притом так, что каждый момент этой фйгурности ориентирован совершенно одинаковым образом и фигурность возвращается сама к себе, будучи некоей самодовлеющей явленностью. Провести же окружность радиусом, равным единице, — значит получить фигурность, которая своей внутренней сущностью призвана к тому, Чтобы демонстрировать самодовлеющую явленность энергийной единичности, как бы ее обтекающую выраженную полноту, эманативнофигурную ограниченность и скомпонованность или, если угодно, внешнюю размерность. Число демонстрирует нам то постоянное отношение, которое существует между этой внешне–эманативной размерной полнотой и внутренним содержанием этой полноты. В наивной форме это и понимается в математике как «предел отношения окружности к диаметру».
Позже мы не раз столкнемся именно с такой интуицией, лежащей в основе построения числа.
d) Между прочим, трансцедентность числа , в логическом смысле, яснейшим образом вытекает из понимания его как некоей предельной площади. В последнем из приведенных математических выражений мы, с одной стороны, имеем бесконечный рост количества сторон вписанного многоугольника, с другой стороны—бесконечное нарастание его площади. Эти две бесконечности вплетены одна в другую, и потому их результат есть становление становления в пределе, т. е. число трансцедентное.