Читаем Личность и Абсолют полностью

Отметим и то обстоятельство, что на приведенной таблице Кэли яснейшим образом видна сущность перво–принципа. Ведь всякий первопринцип (как это мы хорошо знаем, и прежде всего из § 23) присутствует в соответствующей ему сфере бытия совершенно одинаково и самотождественно, являясь в то же время и принципом всякого различия. В нашей таблице в каждом элементе группы одинаково и целиком присутствует идея определенного рода композиции двух элементов. Элементы везде тут разные, да и результат композиции везде разный. Но самая композиция формально везде одна и та же, и ее результат в этом смысле везде один и тот же.

c) Пойдем дальше. За становлением идет ставшее, наличное бытие. Наша композиция и все ее результаты пусть застынут в некоей твердой данности. Чем определяется эта твердая данность? В каком виде все элементы будут утверждены в качестве факта? Когда мы в § 65 переходили в область арифметических операций от становления к ставшему, мы столкнулись с т. н. законом счета. Как ведут себя элементы группы в этом смысле и применим ли к понятию группы этот способ рассуждения вообще?

Не без удивления мы находим в определениях понятия группы точные указания на эти законы. А именно, 1) утверждается, что композиция группы обязательно обладает ассоциативным законом, т. е. что и= , и что, стало быть, выражение имеет также вполне определенный, единственный смысл, что и . С другой стороны, коммутативный закон совсем не обладает такой обязательностью, так что, вообще говоря, /= и все группы делятся на коммутативные (Абелевы) и некоммутативные.

d) Но в особенности ярко торжествует свою победу наша пятиступенная диалектика, когда мы задаемся вопросом о том, где же завершительный, выразительный момент определения понятия группы и как на своем языке выражают его математики. Его можно выразить более общо и менее общо. Для первого случая вспомним, какую форму принимало у нас выражение в применении к действиям. Арифметическая операция превращается тут в целый комплекс действий, который в иной комбинации своих направлений оказывается уравнением. Уравнение всегда выразительно, давая метод движения от внешнего неизвестного к известному внутреннему или от внешнего известного к внутреннему неизвестному. Если к элементам; группы применим принцип уравнений, т. е. если уравнения с неизвестными в качестве элементов группы обязательно разрешимы, то возможность этих уравнений и обеспечит нам искомую выразительность определения понятия группы. Действительно, если принять во внимание возможную некоммутативность, то, оказывается, для каждой группы уравнения

=

y=

обязательно разрешимы если, конечно, не равно нулю), и притом однозначно разрешимы. Это звучит, однако, довольно отвлеченно, и мы можем употребить тут гораздо более конкретные выражения.

А именно, из предыдущих уравнений вытекает, что необходим и случай =, т. е. необходимо, чтобы если не равно единице, то оно в иных случаях и равнялось единице. Точно так же уравнение = разрешимо только тогда, когда возможен и случай =1, т. е. когда имеется некое такое, что · –1

= 1. Это сразу накладывает резкий отпечаток на понятие группы; и в руководствах по теории групп в качестве обязательных моментов определения содержатся еще и такие два: в системе, именуемой «группа», существует элемент–единица, т. е. такой элемент , что для любого системы имеется = = ; и для любого элемента системы существует в системе обратный элемент, такой, что » 1= 1.

Кажется, нефилософ и недиалектик не может и прикоснуться к пониманию подлинного категориального значения для двух обязательных элементов каждой группы, элемента–единицы и обратного элемента. Кажется, еще никому из математиков не пришло в голову понимать эти элементы как выразительные формы логического определения понятия группы. А между тем совершенно неясно, зачем говорится об этих элементах уже в определении группы. Если математики вводят их в определение, то вовсе не потому, что они имеют потребность в логической системе, и вовсе не потому, что понимают весь логически–завершительный смысл этих двух элементов в понятии группы, но исключительно только потому, что в иных группах, а в особенности в геометрических (напр., в группе вращений), эти элементы обладают неотразимой очевидностью, и бьющей в глаза очевидностью, так что, давая после этого общее определение группы, уже никак нельзя обойти упоминания об элементе–единице и обратном элементе. Таким образом, если математики и вводят это упоминание в самое определение группы, то исключительно в результате ползучего эмпиризма, но никак не в результате диалектической ясности самого понятия группы. Тем более нужно быть благодарным исследователям, впервые захотевшим представить это понятие во всей его кристально–философской ясности.

Перейти на страницу:

Похожие книги

Этика Спинозы как метафизика морали
Этика Спинозы как метафизика морали

В своем исследовании автор доказывает, что моральная доктрина Спинозы, изложенная им в его главном сочинении «Этика», представляет собой пример соединения общефилософского взгляда на мир с детальным анализом феноменов нравственной жизни человека. Реализованный в практической философии Спинозы синтез этики и метафизики предполагает, что определяющим и превалирующим в моральном дискурсе является учение о первичных основаниях бытия. Именно метафизика выстраивает ценностную иерархию универсума и определяет его основные мировоззренческие приоритеты; она же конструирует и телеологию моральной жизни. Автор данного исследования предлагает неординарное прочтение натуралистической доктрины Спинозы, показывая, что фигурирующая здесь «естественная» установка человеческого разума всякий раз использует некоторый методологический «оператор», соответствующий тому или иному конкретному контексту. При анализе фундаментальных тем этической доктрины Спинозы автор книги вводит понятие «онтологического априори». В работе использован материал основных философских произведений Спинозы, а также подробно анализируются некоторые значимые письма великого моралиста. Она опирается на многочисленные современные исследования творческого наследия Спинозы в западной и отечественной историко-философской науке.

Аслан Гусаевич Гаджикурбанов

Философия / Образование и наука
Осмысление моды. Обзор ключевых теорий
Осмысление моды. Обзор ключевых теорий

Задача по осмыслению моды как социального, культурного, экономического или политического феномена лежит в междисциплинарном поле. Для ее решения исследователям приходится использовать самый широкий методологический арсенал и обращаться к разным областям гуманитарного знания. Сборник «Осмысление моды. Обзор ключевых теорий» состоит из статей, в которых под углом зрения этой новой дисциплины анализируются классические работы К. Маркса и З. Фрейда, постмодернистские теории Ж. Бодрийяра, Ж. Дерриды и Ж. Делеза, акторно-сетевая теория Б. Латура и теория политического тела в текстах М. Фуко и Д. Батлер. Каждая из глав, расположенных в хронологическом порядке по году рождения мыслителя, посвящена одной из этих концепций: читатель найдет в них краткое изложение ключевых идей героя, анализ их потенциала и методологических ограничений, а также разбор конкретных кейсов, иллюстрирующих продуктивность того или иного подхода для изучения моды. Среди авторов сборника – Питер Макнил, Эфрат Цеелон, Джоан Энтуисл, Франческа Граната и другие влиятельные исследователи моды.

Коллектив авторов

Философия / Учебная и научная литература / Образование и наука