Читаем Личность и Абсолют полностью

Необходимо, между прочим, отметить, что как из однозначной разрешимости указанных уравнений вытекает наличие элемента–единицы и обратного элемента, так и из этого наличия вытекает однозначная разрешимость этих уравнений. Поэтому выразительный характер общих элементов группы нужно понимать не только в связи с приведенными уравнениями, но и самостоятельно, из них самих. В этом случае, однако, выразительная форма, пожалуй, еще ощутимее. Дело в том, что все предыдущие моменты определения понятия группы обладают слишком принципиальным характером и ничего не говорят о реальном протекании в ней композиционного принципа. Элемент единица указывает, напротив того, на некое начало реального оформления группы, т. е. оформления как чего–то целого, а обратный элемент указывает на разнообразные смысловые направления, господствующие в реальном организме группы. То и другое, несомненно, свидетельствует о конкретной выразительности группы.

2. Усвоивши себе логический состав самого понятия группы, обратимся к примерам группы, потому что только здесь можно вполне ощутительно воспринять то, о чем отвлеченно говорит диалектика понятия.

a) Укажем прежде всего чисто числовые, т. е. в собственном смысле арифметические, группы.

Группой является уже самый обыкновенный натуральный ряд чисел, и притом в разнообразном смысле. Пусть, напр., композицией является сложение. Какие бы два числа из натурального ряда мы ни взяли, их сумма безусловно окажется в том же самом натуральном ряду. Пусть композицией будет умножение. И опять, какие бы два числа ни взять, их произведение все равно принадлежит натуральному ряду. Допустим, что у нас имеется совокупность чисел натурального ряда, обладающая тем признаком, что разность каждых двух чисел относится к этой совокупности. Говорится, что число а сравнимо с числом Ъ по модулю с, если они при делении на с дают всегда один и тот же остаток. При такой точке зрения натуральный ряд чисел разбивается на ряд классов, в каждом из которых содержатся все числа, сравнимые между собою по данному модулю. Если у нас модуль = 5, то мы получаем следующий ряд рядов, или классов чисел:

0, 5, 10, 15 …

1, 6, 11, 16 …

2, 7, 12, 17 …

3, 8, 13, 18 …

4, 9, 14, 19 …

Дальнейшие классы, очевидно, были бы только повторением уже данных, и, следовательно, классов возможно здесь столько, каково количественное значение модуля. Все эти пять классов чисел, на которые разбивается натуральный ряд чисел по модулю 5, образуют собою модуль в широком смысле, или вид группы. Легко увидеть на такой группе применение всех указанных выше моментов определения группы.

Из области чисел возможны и более сложные групповые построения. Так, напр., из теории групп можно вывести малую теорему Ферма.

b) Приведем пример группы функций, а именно рациональных функций. Пусть мы имеем, напр., такие шесть функций:

Простым вычислением убеждаемся, что эти функции являются элементами некоей единой группы, если под композицией понимать получение функции от функции, т. е. подстановку в одну из функций функции другой функции вместо. Точно так же все целые функции комплексного переменного образуют группу, если под композицией понимать опять получение функции от функции: целая функция от целой всегда будет тоже целая.

с) Однако особый интерес представляют геометрические группы. Рассмотрим, напр., группу вращений какой–нибудь плоской фигуры. Возьмем равносторонний треугольник лвс и посмотрим, как его можно вращать так, чтобы в результате вращения он совпадал с самим собою. Если мы перечислим все такие способы вращения, они образуют собою группу вращений. Оказывается, таких способов существует шесть: 1) оставление данного треугольника в покое; 2) поворот вокруг центра на 120°, чтобы в попало в а, С—в в и а—в С; 3) поворот вокруг центра на 240° (или на 120° в обратную сторону), чтобы С попало в а, а—в в и в—в С; 4) поворот на 180° вокруг оси ad; 5) то же вокруг be; 6) то же вокруг cf. Будем понимать под композицией замену двух вращений соответствующим эквивалентом в виде одного вращения. В таком случае нетрудно убедиться, что шесть указанных вращений образуют группу, потому что каждые два из них образуют какое–нибудь третье (напр., соединение вращений 2–го и 5–го дает 6–е).

Интересны также группы вращений правильных многогранников, переходящих в самих себя. Таковы группы 12 вращений тетраэдра, 24 вращений октаэдра и куба, 60 вращений додекаэдра и икосаэдра.

Перейти на страницу:

Похожие книги

Этика Спинозы как метафизика морали
Этика Спинозы как метафизика морали

В своем исследовании автор доказывает, что моральная доктрина Спинозы, изложенная им в его главном сочинении «Этика», представляет собой пример соединения общефилософского взгляда на мир с детальным анализом феноменов нравственной жизни человека. Реализованный в практической философии Спинозы синтез этики и метафизики предполагает, что определяющим и превалирующим в моральном дискурсе является учение о первичных основаниях бытия. Именно метафизика выстраивает ценностную иерархию универсума и определяет его основные мировоззренческие приоритеты; она же конструирует и телеологию моральной жизни. Автор данного исследования предлагает неординарное прочтение натуралистической доктрины Спинозы, показывая, что фигурирующая здесь «естественная» установка человеческого разума всякий раз использует некоторый методологический «оператор», соответствующий тому или иному конкретному контексту. При анализе фундаментальных тем этической доктрины Спинозы автор книги вводит понятие «онтологического априори». В работе использован материал основных философских произведений Спинозы, а также подробно анализируются некоторые значимые письма великого моралиста. Она опирается на многочисленные современные исследования творческого наследия Спинозы в западной и отечественной историко-философской науке.

Аслан Гусаевич Гаджикурбанов

Философия / Образование и наука
Осмысление моды. Обзор ключевых теорий
Осмысление моды. Обзор ключевых теорий

Задача по осмыслению моды как социального, культурного, экономического или политического феномена лежит в междисциплинарном поле. Для ее решения исследователям приходится использовать самый широкий методологический арсенал и обращаться к разным областям гуманитарного знания. Сборник «Осмысление моды. Обзор ключевых теорий» состоит из статей, в которых под углом зрения этой новой дисциплины анализируются классические работы К. Маркса и З. Фрейда, постмодернистские теории Ж. Бодрийяра, Ж. Дерриды и Ж. Делеза, акторно-сетевая теория Б. Латура и теория политического тела в текстах М. Фуко и Д. Батлер. Каждая из глав, расположенных в хронологическом порядке по году рождения мыслителя, посвящена одной из этих концепций: читатель найдет в них краткое изложение ключевых идей героя, анализ их потенциала и методологических ограничений, а также разбор конкретных кейсов, иллюстрирующих продуктивность того или иного подхода для изучения моды. Среди авторов сборника – Питер Макнил, Эфрат Цеелон, Джоан Энтуисл, Франческа Граната и другие влиятельные исследователи моды.

Коллектив авторов

Философия / Учебная и научная литература / Образование и наука