Читаем Личность и Абсолют полностью

Менее интересен орнамент рис. 24 с основной фигурой, обладающей вращением на 90° и четырьмя осями отражения, которые проходят через ее центр, наподобие креста с равными концами. Здесь, так сказать, слишком «буквальные» отражения. Гораздо сложнее зато орнамент на рис. 25. Тут основная фигура возникает из фигуры с вращением в 90° через отражение относительно оси, не проходящей через центр. Оси симметрии, параллельные к сторонам квадратов, являются осями отражения, но только они не проходят через неподвижные точки вращений, проходя посредине между ними. Обе совокупности других осей состоят только из осей скользящего отражения. Решетка переносов здесь тоже квадратная, хотя ее и не сразу видно (нужно повернуть рисунок на 45 °, и тогда станет заметным квадрат со сторонами, проходящими через четыре средние точки). В орнаментах это обычно. В заключение прибавим еще два примера из восточного искусства, Один 

[922], рис. 26, — это группа вращений в 60° с 6 складными …. [923]

осями. Основной фигурой является здесь нечто вроде бантика трилистника, который, однако, не сразу выделяется. Этот замечательный образец относится к XIV в. (мечеть в Каире). Другой такой же замечательный образец восточной орнаментики  [924]—рис. 27. Основную фигуру и тут не сразу рассмотришь—простой крест с 16–кратной симметрией. Тут мы находим группу вращений в 90°, потом четыре вида осей отражения, потом еще восемь дальнейших симметрий, соединенных с отражениями, т. е. скользящие отражения в плоскости, которые перемещают один на место другого оба ряда лежачих крестов. Что же касается вращений, то тут мы находим вращательные отражения вокруг центров розеток с углами в ±90°; горизонтальные и вертикальные винтовые оси между розетками; две группы простых витых осей, повернутых на 45° по сравнению с предыдущими и проходящих через центр розеток; и вращательные отражения на 180° (пространственный центр симметрии) вокруг средних точек концов крестов.

3. Наконец, богатейший и интереснейший материал для теории групп дает кристаллография, где замечательный русский кристаллограф Федоров определил и вывел групповое строение кристаллов. В настоящее время можно говорить вообще о кристаллическом пространстве, в котором играют основную роль отражения и движения, лежащие в основе симметрии, аналогично с рассмотренными выше плоскими решетками. Группы, определяющие собою кристаллическое пространство, формулируются чисто теоретически, и само кристаллическое пространство получает вполне априорную структуру. Так выводится 32 кристаллических класса, таблицу которых можно найти в нижеуказываемом руководстве. Мы, однако, не станем приводить этот материал, потому что принципы групповой структуры достаточно иллюстрируются фактами плоской решетки.

[925]

§ 126. Модуль, кольцо, поле.

Выше, в § 123, п. Зb, были указаны все основные формы выразительного числа. Из них мы коснулись только группы. Остановимся вкратце и на прочих формах.

1. а) Когда разность каждых двух элементов совокупности принадлежит к самой совокупности, последняя носит название модуля. В § 124, п. 2а, для модуля был приведен простейший числовой пример. Без дальнейшего видно, что модуль есть элементарный вид ряда рядов и что поэтому является выразительной формой (как это вытекает из § 123). Также отчетливо видно, что здесь налицо вся наша пятиступенная диалектика. Перво–принципом модуля в узком смысле слова является, очевидно, композиционный принцип вычитания: это совокупность таких элементов, разность каждых двух из которых относится к самой совокупности. Принцип модуля (т. е. принцип его структуры) есть совокупность всех разностей, которые в нем возможны, потому что принцип есть первообразная структура перво–принципа, а эта совокупность и дает нам последовательный ряд всех возможных взаимоотношений, определяющих структуру модуля. Этот последовательный ряд тоже называется модулем. Здесь, следовательно, имеются в виду наименьшая разность двух элементов и все ее кратные. Говорится: два числа а и Ъ— сравнимы по модулю т, если разница (а—b) есть число модуля. Но если этот фундаментальный ряд разностей есть принцип, или бытие, модуля, то каждый реальный ряд чисел, входящий в модуль, есть уже становление модуля, так как каждый такой реальный ряд чисел есть постепенное и последовательное осуществление этих разностей.

Перейти на страницу:

Похожие книги

Этика Спинозы как метафизика морали
Этика Спинозы как метафизика морали

В своем исследовании автор доказывает, что моральная доктрина Спинозы, изложенная им в его главном сочинении «Этика», представляет собой пример соединения общефилософского взгляда на мир с детальным анализом феноменов нравственной жизни человека. Реализованный в практической философии Спинозы синтез этики и метафизики предполагает, что определяющим и превалирующим в моральном дискурсе является учение о первичных основаниях бытия. Именно метафизика выстраивает ценностную иерархию универсума и определяет его основные мировоззренческие приоритеты; она же конструирует и телеологию моральной жизни. Автор данного исследования предлагает неординарное прочтение натуралистической доктрины Спинозы, показывая, что фигурирующая здесь «естественная» установка человеческого разума всякий раз использует некоторый методологический «оператор», соответствующий тому или иному конкретному контексту. При анализе фундаментальных тем этической доктрины Спинозы автор книги вводит понятие «онтологического априори». В работе использован материал основных философских произведений Спинозы, а также подробно анализируются некоторые значимые письма великого моралиста. Она опирается на многочисленные современные исследования творческого наследия Спинозы в западной и отечественной историко-философской науке.

Аслан Гусаевич Гаджикурбанов

Философия / Образование и наука
Осмысление моды. Обзор ключевых теорий
Осмысление моды. Обзор ключевых теорий

Задача по осмыслению моды как социального, культурного, экономического или политического феномена лежит в междисциплинарном поле. Для ее решения исследователям приходится использовать самый широкий методологический арсенал и обращаться к разным областям гуманитарного знания. Сборник «Осмысление моды. Обзор ключевых теорий» состоит из статей, в которых под углом зрения этой новой дисциплины анализируются классические работы К. Маркса и З. Фрейда, постмодернистские теории Ж. Бодрийяра, Ж. Дерриды и Ж. Делеза, акторно-сетевая теория Б. Латура и теория политического тела в текстах М. Фуко и Д. Батлер. Каждая из глав, расположенных в хронологическом порядке по году рождения мыслителя, посвящена одной из этих концепций: читатель найдет в них краткое изложение ключевых идей героя, анализ их потенциала и методологических ограничений, а также разбор конкретных кейсов, иллюстрирующих продуктивность того или иного подхода для изучения моды. Среди авторов сборника – Питер Макнил, Эфрат Цеелон, Джоан Энтуисл, Франческа Граната и другие влиятельные исследователи моды.

Коллектив авторов

Философия / Учебная и научная литература / Образование и наука