Читаем Магия математики. Как найти x и зачем это нужно полностью

А так как h → 0, и cos h, и 1/cos h будут стремиться к 1, что и требовалось доказать.

Отступление

С помощью полученного результата и нескольких алгебраических формул (включая cos² h + sin² h = 1) можно доказать, что

Производные синуса и косинуса – ключи к дифференцированию тангенса.

Теорема: Если y = tan x, то y' = 1/(cos²x) = sec²x.

Доказательство: Предположим, что u(x) = tan x = (sin x)/(cos x). Тогда

tan (x) cosx =sinx

Продифференцировав обе части и применив правило дифференцирования произведения функций, получим

tanx(–sinx)+tan'(x) cosx =cosx

Разделим все члены на cos x и решим уравнение для tan' (x):



в котором предпоследнее значение получается в результате деления тождества cos 2x + sin 2x = 1 на cos 2x.

Отступление

Доказательство правила дифференцирования частного: Так как u(x)g(x) = f(x), продифференцировав обе части уравнения, в соответствии с правилом дифференцирования произведения получим

u(x)g'(x) +u
'(x)g(x) =f'(x)

Умножив все на g(x), получим

g(x)u(x)g'(x) +u'(x)g(x)g(x) =g(x)f'(x)

Заменим g(x) u(x) на f(x) и решим уравнение для u'(x), что приведет нас к искомому результату.◻

Теперь мы умеем дифференцировать многочлены, показательные и тригонометрические функции. Также мы научились дифференцировать их суммы, произведения и частные. Но есть еще сложные функции – функции от функций, с которыми тоже нужно уметь обращаться. Правило дифференцирования сложной функции иначе называют цепным правилом. Согласно ему, например, если f(x) = sin x, а g(x) = x³, то

f(g(x)) = sin(g(
x)) = sin(x³)

Не перепутайте: это не то же самое, что

g(f(x)) =g(sinx) = (sinx

Теорема (цепное правило): Если y = f(g(x)), то y' = f'(g(x))g'(x).

Например, если f(x) = sin x, а g(x) = x³, то f'(x) = cos x, а g'(x) = 3x². Согласно цепному правилу, при y = f(g(x)) = sin (x³)

y'=f'(g(x))g'(x) = cos(g(x))g'(x) = 3x² cos(x
³)

Обобщая, можно сказать, что при y = sin (g(x)) y' = g'(x) cos(g(x)). Та же логика подсказывает нам, что y = cos (g(x)) имеет производную y' = –g'(x) sin (g(x)).

С другой стороны, функция y' = –g'(x) sin (g(x)), согласно цепному правилу, выглядит так:

y'=g'(f(x))f'(x) = 3(f(x)²)f'(x) = 3 sin²xcosx

Обобщим и это: цепное правило говорит нам, что при y = (g(x))n y' = n(g(x))n–1g'(x). А что насчет y = (x3)5?

y'= 5(x3)4(3x²) = 5x12(3x
2) = 15x14

что полностью соответствует правилу дифференцирования произведения функций.

Продифференцируем y = √(x2 + 1) = ( +1)½.



Со степенными функциями дело обстоит ничуть не сложнее. Так как ex является собственной производной, то при y = eg(x) имеем

y'=g'(x)eg(x)

Например, производная y = e – y' = (3)e.

Обратите внимание, что функция y = ekx имеет производную y' = kekx = ky. Это одна из причин, почему показательные (экспоненциальные) функции так важны – они появляются, когда скорость роста функции пропорциональна величине ее значения. По этой причине показательные функции часто связаны с процессами в финансовой сфере и в биологии.

Натуральный логарифм ln x обладает одним интересным свойством:

elnx=x

при любом значении x, большем 0. Чтобы найти его, логарифма, производную, воспользуемся цепным правилом. Допустив, что u(x) = ln x, получим eu(x) = x. Продифференцировав обе части этого уравнения, получаем u'(x)eu(x) = 1. Но поскольку eu(x) = x, u'(x) = 1/x. Другими словами, если y = ln x, тогда y' = 1/x. Вновь применив цепное правило, получаем: если y = ln (g(x)), то

Давайте соберем все найденное с помощью цепного правила в таблицу:



Хотите применить все это на практике? Вот вам задачка, практичней некуда. Корова Клара пасется в километре на север от реки (оси x), в 3 километрах на запад и в километре на юг от коровника. Наевшись и нагулявшись, она решила попить водички и пойти домой. Естественно, ей хочется сделать это все как можно быстрее. Где именно ей нужно спуститься к реке, чтобы максимально сократить путь?



Перейти на страницу:

Похожие книги

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература