Читаем Магия математики. Как найти x и зачем это нужно полностью

Где же максимум? В нашем примере его попросту нет: значение y-координаты для x² – 8x + 10 может быть сколь угодно большим. Ограничить его можно одним единственным способом – определив для x пределы значений. Возьмем для примера 0 ≤ x ≤ 6. Тогда при x = 0 y будет равен 10, а при x = 6 – −2, то есть критической точкой для этой функции является x = 0. Обобщение этого приводит нас к одной очень важной теореме.

Теорема (теорема об экстремуме функции в точке): Если дифференцируемая на отрезке функция y = f(x) принимает максимальное или минимальное значение в точке x*, то x* должна быть либо критической точкой f, либо граничной точкой отрезка.

Давайте на секунду вернемся в начало главы, к задаче с лотком. Нам нужно, по сути, максимизировать функцию

y= (12 – 2xx= 4x³ – 48x² + 144x

где x должен находиться в диапазоне от 0 до 6. Нам нужно найти такой x, при котором значение y будет наибольшим. Так как наша функция представляет собой многочлен, ее производную можно найти как

y'= 12x² – 96x+ 144 = 12(x² – 8x
+ 12) = 12(x – 2)(x – 6)

Следовательно, ее критическими точками будут x = 2 и x = 6.

А так как мы знаем, что при объеме, равном 0, и конечных точках, равных 0 и 6, объем будет минимальным, нам остается только одна критическая точка – x = 2. Именно она и даст нам максимум – y = 128 см³.

Правила дифференцирования

Чем больше функций мы продифференцируем, тем больше задач сможем решить. Пожалуй, самой важной функцией в исчислении является показательная функция y = ex. Ее особенность в том, что она равна собственной производной.

Теорема: Если y = ex, то y' = ex.

Отступление

Почему f(x) = ex соответствует f'(x) = ex? Смотрите, в чем секрет. Сначала обратите внимание на то, что

Вспомним, что е, по сути, есть

что означает, что с увеличением n значение члена (1 + 1/n)n будет все ближе и ближе подходить к e. Теперь предположим, что h = 1/n. При очень большом значении n h = 1/n находится очень близко к 0. Следовательно, при h, близком к 0,

e≈ (1 +h)1/
h

Возведя обе части в степень h (и помня, что (ab)c = abc), получаем

А есть ли еще такие функции, которые равны своим производным? Есть. Но все они сводятся к y = cex, где c заменяется любым действительным числом (в том числе и 0, который превращает функцию в постоянную y = 0).

Не так давно мы выяснили, что при сложении функций производная суммы равна сумме производных. А что насчет умножения? Увы, но производная произведения не равна произведению производных. Тем не менее посчитать ее не очень сложно – для этого достаточно воспользоваться несложной теоремой.

Теорема (правило дифференцирования произведения функций): Если y = f(x)g(x), то

y' = f(x)g'(x) +f'(x)g(x)

Например, согласно правилу дифференцирования произведения, чтобы продифференцировать y = x3ex, нам нужно взять f(x) = x³ и g

(x) = ex. В результате у нас получится

y' = f(x)g'(x) +f'(x)g(x) = x3ex + 3x2ex

Обратите внимание, что при f(x) = x3 и g(x) = x5 их произведение, согласно тому же правилу, составит x3x5 = x8. Производная же будет выглядеть как

y' = x3(5x
4) + 3x2(x5) = 5x7 + 3x7 = 8x7

что полностью соответствует правилу дифференцирования степенной функции.

Отступление

Доказательство (правило дифференцирования произведения функций): Предположим, что u(x) = f(x)g(x). Тогда

А дальше творим истинно математическое волшебство – добавляем к числителю 0, но не привычным способом, а с помощью прибавления и вычитания f(x + h)g(x):

Так как h → 0, в результате имеем f(x)g'(x) + f'(x)g(x), что и требовалось доказать.◻

Но доказанное правило полезно не только в этом конкретном случае – с его помощью можно найти производные других функций. Мы уже доказали, что правило дифференцирования степенной функции верно при положительных значениях показателя степени. Давайте посмотрим, как оно поведет себя при дробных и отрицательных значениях.

Например, согласно правилу дифференцирования степенной функции



Сможем ли мы доказать его с помощью правила дифференцирования произведения? Предположим u(x) = √x. Тогда

Перейти на страницу:

Похожие книги

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература