Строго по клеточкам рисовала одна Дина, а Саня и Женя лишь правильно повторяли общий контур рисунка. Тем не менее с точки зрения «угадывания закономерностей» они тоже решали задачи правильно. Интересно, что и в этой, и в других задачах
Про нижнюю фигурку рис 142 интересно, что всегда на уроках я начинаю ее рисовать на полях, когда скучаю, и получаю от этого какое-то иррациональное удовольствие — не знаю, связано ли это с кружком —
Игры с двумя зеркалами. Сначала я взял два маленьких плоских зеркала (к сожалению, нет у меня зеркал большого размера) и показывал на столе, что будет, если фишка, скрепка и т. п. отражаются в обоих зеркалах вместе, а также что будет, если менять угол между зеркалами. Потом мы пошли в коридор, я принёс из кухни второе большое зеркало, и девочки встали между двумя параллельными зеркалами, с большим интересом наблюдая длинную цепочку уходящих в бесконечность своих повторений.
Это развлечение было встречено с большим восторгом и вообще с большим подъёмом.
Погода была дивная, тёплая и солнечная, и жалко было забирать девочек с улицы. Сначала я решил, так же, как и в прошлый раз, перенести занятие с 1600
на 1830. Потом, когда уже и это более позднее время стало приближаться, а на улице по-прежнему было очень хорошо, у Аллы возникла идея провестиЗадание 1.
Сначала девочки всё пытались расположиться вокруг какой-нибудь плоской поверхности вроде стола. В основном в этом качестве служила приступка к одной из будок. С трудом мне удалось переключить их внимание на себя.
Я попросил их попытаться угадать, сколько шагов будет от одной будки до другой. Девочки стали называть самые фантастические числа, причём одна и та же из них вполне могла сказать «20» и через секунду «100».
После этого мы стали измерять расстояние шагами. Первой пошла Дина, но она стала отмерять не шаги, а ступни, и дело затянулось. Второй пошла Женя. Она очень характерно считала шаги. Сначала на каждый шаг — счёт; затем, когда пошли числа подлиннее, соответствие потерялось: пока она произносила «двадцать четыре», она вполне могла пройти 3–4 шага. Наконец, она вошла в область чисел, которые вообще нетвёрдо помнила. Получалось вот что: Женя мучительно пытается вспомнить следующее число, а ножки тем временем всё идут и идут, отмеряют шаги.
У меня с этим до сих пор трудности, по-моему. —
Дима припрыгивает вокруг и как всегда очень занудно пытается втолковать Жене, что она всё делает неправильно. Она от него отмахивается:
— Ну, Дима, Дима, не мешай! — и вообще забывает, на каком числе остановилась.
— Сколько там было, пап? — спрашивает она меня, наморщив лоб.
Я отвечаю:
— Тридцать шесть.
— А как дальше, пап?
Тут ей пытается подсказать Дина, но Женя буквально взрывается от возмущения:
— Ну, Динка! Не у тебя спрашивают!
И вот в течение всего этого диалога с четырьмя участниками она не останавливается, а всё продолжает аккуратно ставить ногу за ногу.
Затем то же самое, хотя и в меньшем объёме, повторилось с Саней. Числа у всех девочек получились существенно различные. Мы попытались сравнить у каждой из них то число, которое получилось, с тем, которое было «предсказано» (и которое они, конечно, уже забыли). Но операция сравнения имела для них мало смысла; единственный вывод, который они извлекли из неё, состоял в том, что они угадали неправильно. Саня очень оскорбилась и стала заново шагать и считать для того, чтобы на этот раз получилось столько шагов, сколько она предсказала. Я её едва утихомирил тем, что она ошиблась меньше всех (это правда).
В заключение я решил развеселить девочек и стал тоже мерить этот пролёт своими шагами, причём стал делать шаги огромного размера. Все просто покатывались со смеху, однако без всяких математических выводов — что, мол, число шагов зависит также и от длины одного шага. Когда же я в последний раз шагнул прямо на стену, это вызвало уже совсем полную бурю.