Читаем Математика для гуманитариев: живые лекции полностью

Игру придумал где-то 130 лет назад американский математик- популяризатор Сэм Лойд. А чуть позже он пообещал большой приз

Такая вот детская игра. Делайте, что хотите (в рамках ука­занного правила). Передвигайте фишки как вам угодно. Только приведите игру в исходную позицию. Начался настоящий пятна- шечный бум. Примечательно, что на этот момент наука алгебра в другой части света находилась в очень продвинутом состоянии. Математики сказали свое веское слово, предоставив абсолютное доказательство того, что выиграть в такую игру невозможно. Тем не менее ажиотаж с игрой в пятнашки продолжался еще много лет — так много было желающих посрамить математику и «сру­бить» тысячу долларов.

($1000) тому, кто переведет комбинацию с картинки рис. 2 в исход­ную позицию на рис. 1.

Что же означает в этой игре «абсолютное доказательство»? Это значит: какие бы действия вы не совершили, сколько бы времени и каким количеством способов бы не передвигали фишки, вы ни­когда, ни при каких условиях не вернетесь из позиции на рис. 2 в исходную позицию на рис. 1. В частности, если кто-то предъявил такое решение, значит он — лгун. Он, видимо, взял, выдрал фиш­ки из коробки и расставил их в правильном порядке. Абсолютное доказательство — это точное, настолько точное утверждение, на­сколько вообще что-то может быть точным. Математика — наука точных утверждений. Не «примерно», не «может быть», не «скорее всего, не приведете», а никогда, ни при каких условиях не приве­дете, какие бы способности к этой игре у вас ни были.

Я постараюсь доказать эту теорему. Но что значит «постараюсь доказать»? Что вообще означает «доказать»? Что значит «я ее докажу»? Как вы это понимаете?

Слушатель: Мы будем убеждены.

А.С.: Вот именно. Я найду способ вас убедить. Но с другой стороны, это не совсем то, что нам нужно.

Расскажу такую историю. Один рыцарь объяснял другому ры­царю математику. Первый рыцарь был очень умный, а второй — очень глупый. Второй рыцарь никак не мог понять доказательство. И тогда умный рыцарь говорит: «Честное благородное слово, это так». И второй сразу поверил: «Ну, тогда о чем разговор. Мы же с Вами люди безупречной чести, и я, конечно, Вам верю. Я полно­стью убежден».

У нас разговор пойдет не о таком способе убеждения. Идея ма­тематического, абсолютного доказательства не в том, что я дам честное слово, а в том, что я, апеллируя к вашему разумению, передам вам какое-то знание, которое вы потом столь же спокой­но передадите дальше. Вы придёте и скажете: «Мы знаем, поче­му в “пятнашки” бессмысленно играть. Мы это знаем совершенно точно, нам это доказал Алексей. И не просто доказал при помощи какого-то там шаманства, пошаманил-пошаманил и сказал, что нет решения у этой задачи. Мы получили такое знание, которое смо­жем воспроизвести и доказать, что выиграть в игру “пятнашки” невозможно».

Насчет пошаманить есть очень поучительный эпизод из жиз­ни математиков. В начале XX века жил в Индии математик Сри­ниваса Рамануджан. На момент начала нашей истории ему было 26 лет. Он заваливал письмами лондонское математическое обще­ство, в которых были формулы, содержащие числа «7Г» и «е» (мы с ними позже познакомимся) и страшные бесконечные суммы, ко­торым эти выражения равны. В Лондоне проверяют — всё верно. А Рамануджан присылает всё новые и новые письма. Профессор математики Г. Харди приглашает его приехать в Англию и рас­сказать, как он выводит эти формулы. Рамануджан отвечает, что формулы сообщает ему во сне богиня Маха-Лакшми1. Харди, ко­нечно, посмеялся, решив, что индус не хочет делиться секретом.

Английский математик пишет новое письмо, в котором пытается заверить Рамануджана, что никто не будет претендовать на его открытие. Такое предположение оскорбляет индуса. Он отвечает, что совершенно не дорожит такими вещами, как авторство.

В конце концов Рамануджан все-таки приехал в Лондон, где стал профессором университета. Многие присланные им формулы оказались верны. Но далеко не все из предложенных им формул на сегодняшний день доказаны. Некоторые из них остаются от­кровениями, которые были сообщены богиней Рамануджану. «Аб­солютное» их доказательство пока неизвестно.

А теперь отдохнем, посмотрим на этот футбольный мяч (рис. 3).

Из чего состоит мяч? Он сшит из лоскутков. Вы когда-нибудь задумывались над том, как именно сделан футбольный мяч и по­чему именно так? Это чисто математический вопрос. Вы пока подумайте, где же тут математика. А я приступаю к математиче­скому доказательству невозможности выиграть в игру «15».

Начнем с гораздо более простой ситуации. Возьмем доску 8x8 (рис. 4) и достаточно большой запас (заведомо больший, чем нам может понадобиться) костей домино (одна доминошка покрывает две клеточки на доске).

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука