Классическая физика допускает возможность ошибок в измерениях и для их коррекции использует методы математической статистики и теории вероятностей. Однако в классической физике измеряемая величина определена однозначно, т.е. имеет точное значение. Иначе обстоит дело в квантовой механике, где наше представление о событиях формируется только на основе статистических данных. В отличие от классической физики в квантовой механике не предполагается измерительных устройств, разрешение которых можно было бы увеличивать. О существовании частиц в пространстве и времени мы судим по косвенным признакам, Классически понимаемая объективная реальность элементарных частиц странным образом теряется не в тумане какой-то новой плохо определенной или еще не нашедшей своего объяснения концепции реальности, а в прозрачности математических выкладок, описывающих не поведение элементарных частиц, а наше представление о нем.
Исходя из этого, мы приходим к выводу, что реальный мир есть не то, о чем говорят наши органы чувств с их ограниченным восприятием внешнего мира, а скорее то, что говорят нам созданные человеком математические теории, охватывающие достаточно широкий круг явлений. В евклидовой геометрии понятия точки, линии, плоскости и тому подобное — идеализации, но идеализации реальных объектов, и поэтому реальные точки, линии и плоскости мы можем воспринимать как реальность. А что нам делать с гравитационным взаимодействием и электромагнитным излучением? Ведь мы наблюдаем не их самих, а лишь производимые ими эффекты. Но какова физическая реальность, лежащая за пределами математики? Мы не располагаем даже воображаемыми физическими картинами, достаточными для объяснения гравитационного взаимодействия и полей. Трудно, если вообще возможно, избежать вывода:
А сколь реальна математика? Реально ли физически то, что она утверждает относительно реального мира? Чтобы ответить на этот вопрос, обратимся к некоторым приложениям математики. Иоганн Кеплер провозгласил, что каждая планета движется вокруг Солнца по эллиптической орбите. Но был ли эллипс
В качестве другого примера приложения математики можно привести риманову геометрию и тензорный анализ. Были ли риманова геометрия и тензорный анализ совершенно адекватным математическим аппаратом для общей теории относительности? Скорее всего нет. Есть основания считать, что Эйнштейн просто попытался наилучшим образом распорядиться тем математическим аппаратом, который, по его мнению, соответствовал нуждам теории относительности. Сколь ни остроумен замысел теории относительности, она носит несколько искусственный характер. Вследствие своей чрезмерной сложности теория относительности мало применима при решении астрономических задач. Правильность ее пока подтверждается только тем, сколь точно она предсказала три астрономических явления, о которых мы уже говорили. Если из истории науки можно извлекать какие-то уроки, то следует предполагать, что когда-нибудь на смену общей теории относительности придет более совершенная теория.