Читаем Математика. Поиск истины. полностью

Эти узоры на небе, украшающие область видимого, надо признать самыми прекрасными и совершенными из подобного рода вещей, но все же они сильно уступают вещам истинным с их перемещениями относительно друг друга, происходящими с подлинной быстротой и медленностью, в истинном количестве и всевозможных истинных формах…

Значит, небесным узором надо пользоваться как пособием для изучения подлинного бытия, подобно тому, как если бы нам подвернулись чертежи Дедала или какого-нибудь иного мастера или художника, отлично и старательно вычерченные. Кто сведущ в геометрии, тот, взглянув на них, нашел бы прекрасным их выполнение, но было бы смешно их всерьез рассматривать как источник истинного познания равенства, удвоения или каких-либо отношений.

…Значит, мы будем изучать астрономию так же, как геометрию, с применением общих положений, а то, что на небе, оставим в стороне, раз мы действительно хотим освоить астрономию.

([2], с. 340-341.)

Такая концепция астрономии совершенно неприемлема для современного ума, и ученые без колебаний обвинили Платона в том, что, принизив значение чувственного опыта, он причинил ущерб развитию естествознания. Однако не следует упускать из виду, что подход Платона к астрономии во многом аналогичен методу, которому успешно следует геометр, занимающийся изучением не столько реальных объектов треугольной формы, сколько мысленных идеализаций треугольников. Во времена Платона наблюдательная астрономия практически достигла предела возможного, и Платон вправе был считать, что дальнейший прогресс астрономии требует глубокого осмысления собранных данных и их теоретического обобщения.

К сожалению, платоновская концепция абстрактных идеалов, на века замедлила развитие экспериментального естествознания. Ведь из нее следовало, что истинное знание приобретается только путем философского созерцания абстрактных идей, а не наблюдений случайных и несовершенных явлений реального мира.

Но были (и есть) философы, допускавшие существование реального внешнего мира, убежденные, что наши ощущения дают достаточно точное представление о нем. Аристотель в противоположность Платону не только утверждал существование мира, внешнего по отношению к человеку, но и считал, что наши представления о нем получаются путем абстрагирования из него идей, общих различным классам материальных объектов, которые мы воспринимаем как треугольники, сферы, листву и горы. Аристотель подверг критике потусторонний мир Платона и сведение естествознания к математике. Физик в буквальном смысле слова, Аристотель видел в материальных объектах первичную субстанцию и источник реальности. Физика и естествознание в целом должны заниматься изучением окружающего мира, извлекая в этом процессе истины о нем. Истинное знание по Аристотелю рождается из чувственного опыта с помощью интуиции и абстракции. Абстрактные идеи не существуют независимо от человеческого разума.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука