Читаем Математика. Поиск истины. полностью

Суть идеализации, необходимость которой отстаивал Галилей, сводилась к пренебрежению случайными или второстепенными эффектами. В выделении главного он начал с наблюдений, а затем мысленно представил себе, что произошло бы, если устранить всякое сопротивление, т.е. если бы тела падали в пустоте, и пришел к заключению, в котором распознал общий принцип: в пустоте все тела падают по одному и тому же закону. Заметив, что сопротивление воздуха слабо сказывается на колебаниях маятника, Галилей провел опыты с маятниками, подтвердив установленные им принципы. Заподозрив, что трение также относится к числу вторичных эффектов, Галилей осуществил серию экспериментов с гладкими шарами, скатывающимися по гладкой наклонной плоскости, пытаясь вывести законы, в соответствии с которыми двигались бы тела в отсутствие трения. Таким образом, Галилей не просто ставил опыты и на основе полученных данных делал выводы — при интерпретации экспериментов он заранее исключал все несущественное. Величие Галилея проявилось, в частности, в том, что он ставил правильные вопросы относительно природы.

Разумеется, реальные тела падают в среде, обладающей сопротивлением. Что мог сказать Галилей о таких движениях? Его ответ гласил:

Дабы рассмотреть этот вопрос научно, следует отбросить все указанные трудности [сопротивление воздуха, трение и т.д.] и, сформулировав и доказав теоремы для случая, когда сопротивление отсутствует, применять их с теми ограничениями, какие подсказывает нам опыт.

Пренебрегая сопротивлением воздуха и трением, пытаясь найти законы движения в пустоте, Галилей вступал в противоречие с Аристотелем и даже с Декартом, мысленно представляя тела, движущиеся в пустом пространстве, а также использовал метод идеализации, или абстрагирования от второстепенных свойств. Именно так поступают математики, изучая реальные фигуры. Математик абстрагируется от молекулярной структуры, цвета и толщины линий, чтобы дойти до некоторых фундаментальных свойств, а затем сосредоточивает все внимание на изучении этих свойств. Аналогичным образом действовал и Галилей, пытаясь за внешним разнообразием явлений разглядеть физические факторы, лежащие в основе явления. Математический метод идеализации, несомненно, следует рассматривать как шаг, уводящий нас от реальности, но, как ни парадоксально, именно этот шаг позволяет нам приблизиться к реальности в гораздо большей степени, чем учет всех имеющихся на лицо факторов.

Мудрость Галилея проявилась и в еще одном тактическом ходе. Он не пытался, как это делали естествоиспытатели и философы до него, охватить все явления природы, а выбрав несколько наиболее существенных явлений, принялся упорно и последовательно их изучать. Галилей счел разумным действовать осторожно и осмотрительно, продемонстрировав сдержанность, достойную мастера.

Выношенный Галилеем план изучения природы включал четыре пункта. Во-первых, получить количественные описания физических явлений и облечь их в математические формулы. Во-вторых, выделить и измерить наиболее фундаментальные свойства явлений. Эти допускающие количественное выражение свойства надлежало принять за переменные в формулах. В-третьих, построить физику дедуктивно на основе фундаментальных физических принципов. В-четвертых, при изучении явления непременно прибегать к его идеализации.

Чтобы претворить этот план в жизнь, Галилею было необходимо выявить фундаментальные законы. Можно, например, получить формулу, устанавливающую зависимость между числом браков в Таиланде и ценой на подковы для лошадей в Нью-Йорке, поскольку и та, и другая величина меняются из года в год. Но такая формула не имела бы научной ценности, ибо не содержала бы, ни прямо, ни косвенно, никакой полезной информации. Поиск фундаментальных законов был еще одной грандиозной задачей, поскольку и в этом Галилей резко расходился со своими предшественниками. При избранном им подходе к изучению движущейся материи нельзя было не принимать во внимание Землю, движущуюся в пространстве и одновременно вращающуюся вокруг своей оси, и уже одно это в значительной мере обесценивало ту единственную заслуживающую внимания систему механики, которой обладал мир в эпоху Возрождения, — механику Аристотеля.

Сначала Галилей был склонен принять гипотезу Аристотеля, согласно которой тяжелые тела падают на землю быстрее, чем легкие. Затем Галилей задался вопросом: «Предположим, я разделю тяжелое тело на две части. Будут ли они падать как два легких тела? А что если снова соединить или склеить их? Будут они вести себя как две части или как одно целое?» И после подобных размышлений Галилей пришел к выводу, что, если пренебречь сопротивлением воздуха, все тела падают с одинаковой скоростью.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука