Читаем Математика. Поиск истины. полностью

Как утверждал Аристотель, чтобы тело двигалось, к нему должна быть приложена сила. Следовательно, чтобы автомашина или шар двигались даже по очень гладкой поверхности, необходима какая-то толкающая сила. Галилей глубже проник в суть этого явления, чем Аристотель. Катящийся шар или едущий автомобиль испытывают сопротивление воздуха и тормозятся вследствие трения между ними и поверхностью, по которой движутся. Не будь сопротивления воздуха или трения, для того чтобы шар катился, а автомобиль ехал, не нужно было бы никакой толкающей силы. Они бы двигались с постоянной скоростью неограниченно долго, причем двигались прямолинейно. Этот фундаментальный закон. движения, гласящий, что тело, свободное от действия сил, движется равномерно и прямолинейно в течение сколь угодно большого промежутка времени, был впервые замечен Галилеем (и сформулирован также Декартом); ныне он известен как первый закон Ньютона, который придал ему четкую математическую формулировку. Этот закон утверждает, что тело изменяет скорость только в том случае, если на него действует сила. Таким образом, тела обладают свойством сопротивляться изменению скорости. Это свойство тела, обусловливающее его способность сопротивляться изменению скорости, называется инерциальной массой, или просто массой.

Как видим, уже самый первый принцип физики Галилея противоречит аналогичному принципу физики Аристотеля. Означает ли это, что Аристотель допустил грубые ошибки или что его наблюдения были слишком примитивны и малочисленны, чтобы привести к открытию правильного принципа? Отнюдь. Аристотель был реалистом и учил тому, что подсказывали наблюдения. Метод Галилея был более утонченным и поэтому более успешным. Галилей подошел к решению проблемы как математик. Он идеализировал явление, игнорируя одни факты и подчеркивая другие, подобно тому как математик идеализирует натянутую струну или край линейки, сосредоточивая внимание на одних пропорциях и игнорируя другие. Пренебрегая трением и сопротивлением воздуха и предполагая, что движение происходит в абсолютно пустом евклидовом пространстве, Галилей открыл правильный фундаментальный принцип.

А что можно сказать о движении тела, на которое действует какая-нибудь сила? Пытаясь ответить на этот вопрос, Галилей совершил второе фундаментальное открытие: постоянно действующая сила вынуждает тело либо увеличивать, либо уменьшать скорость. Назовем увеличение или убыль скорости за единицу времени ускорением. Если скорость тела каждую секунду возрастает или уменьшается на 9 м/с, то мы скажем, что его ускорение составляет 9 м/с за секунду, или кратко 9 м/с2.

Например, постоянное сопротивление воздуха вызывает непрерывное уменьшение скорости; именно этим объясняется, что скорость предмета, катящегося или скользящего по гладкому полу, постепенно убывает до нуля. И наоборот, чтобы предмет двигался с ускорением, на него должна действовать какая-то сила. Предмет, падающий с высоты на землю, движется ускоренно. Во времена Галилея мысль о том, что этой силой должно быть земное тяготение, уже начала проникать в сознание людей, и Галилей, не теряя времени на размышления о силе тяготения, исследовал свободное падение тел с количественной стороны.

Он обнаружил, что если пренебречь сопротивлением воздуха, то все падающие на поверхность Земли тела, имеют одинаковое ускорение g, т.е. их скорость возрастает в одном и том же темпе: на 9,8 м/с за секунду, т.е.

g = 9,8 м/с2

. (1)

Если тело падает свободно, например скатившись с ладони, то его начальная скорость равна нулю. Следовательно, к концу первой секунды оно достигнет скорости 9,8 м/с, к концу второй секунды — скорости 2×9,8 = 19,6 м/с и т.д. По истечении t секунд скорость тела

v = 9,8t м/с.

(2)

Эта формула содержит точную информацию о том, как возрастает со временем скорость свободно падающего тела. Она сообщает нам, что чем дольше падает тело, тем больше его скорость. Это хорошо известный факт, ибо большинству из нас приходилось видеть, что тело, сброшенное с большей высоты, ударяется о землю с большей скоростью, чем тело, сброшенное с меньшей высоты.

Чтобы определить путь, пройденный за данный промежуток времени свободно падающим телом, недостаточно просто умножить скорость на время. Произведение скорости на время дало бы правильное значение пути только в том случае, если бы тело двигалось с постоянной скоростью, т.е. равномерно. Галилей доказал, что в случае свободного падения тел правильная формула, связывающая пройденный путь s с продолжительностью падения имеет вид

s = 4,9t

2, (3)

где s — расстояние в метрах, пройденное телом при свободном падении, t — продолжительность падения (в секундах). Например, за 3 с свободно падающее тело проходит расстояние 4,9×32 = 44,1 м.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука