Читаем Математика. Поиск истины. полностью

… [Я исследую] в этом сочинении не виды сил и физические свойства их, а лишь их величины и математические соотношения между ними, как объяснено в определениях. Математическому исследованию подлежат величины сил и те соотношения, которые следуют из произвольно поставленных условий. Затем, обращаясь к физике, надо эти выводы сопоставить с совершающимися явлениями, чтобы распознать, какие же условия относительно сил соответствуют отдельным видам обладающих притягательною способностью тел. После того как это сделано, можно будет с большею уверенностью рассуждать о родах сил, их причинах и физических между ними соотношениях.

([19], с. 244.)

В одном из писем к известному эрудиту преподобному Ричарду Бентли Ньютон объяснил ограниченный успех своей программы следующим образом:

То, что гравитация должна быть внутренним, неотъемлемым и существенным атрибутом материй, дозволяя тем самым любому телу действовать на другое на расстоянии через вакуум, без какого-либо посредника, с помощью которого и через которого действие и сила могли бы передаваться от одного тела к другому, представляется мне настолько вопиющей нелепостью, что, но моему глубокому убеждению, ни один человек, сколько-нибудь искушенный в философских материях и наделенный способностью мыслить, не согласится с ней.

([13], с. 69.)

Ньютон отчетливо сознавал, что открытый им закон всемирного тяготения — описание, а не объяснение.

Во втором письме Ричарду Бентли Ньютон писал:

Иногда вы говорите о тяготении как о чем-то существенном и внутренне присущем материи. Молю вас не приписывать это понятие мне, ибо я отнюдь не претендую на знание причин тяготения и поэтому не буду тратить время на их рассмотрение.

В трех прижизненных изданиях своих «Начал» Ньютон неоднократно высказывался о тяготении, но приведенные выше слова наиболее характерны. Каким образом эта сила преодолевает многие миллионы километров, отделяющие Землю от Солнца, и изгибает орбиту Земли, заставляя её обращаться вокруг Солнца, для Ньютона оставалось непонятным, и он «не измышлял гипотез», которые давали бы объяснение. Ньютон надеялся, что природу тяготения исследуют другие. Тяготение пытались объяснить различными причинами — давлением среды, заполняющей пространство между Солнцем и планетами, и другими процессами, но все предложенные объяснения оказались неудовлетворительными. Позднее от подобных попыток отказались, и гравитацию стали воспринимать как общепризнанный, хотя и по существу непонятный факт. Но, несмотря на полное непонимание физической природы тяготения, Ньютон дал количественное описание его действия, что само по себе было важно и эффективно. Парадокс современной науки состоит в том, что, довольствуясь поиском малого, она достигает столь многого.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука