Читаем Математика. Утрата определенности. полностью

Но при всей кажущейся нелогичности выбор отправной точки для перестройки математики все же имел объяснение. К началу XIX в. различные типы чисел стали настолько привычными, что, хотя их использование и не было обосновано в рамках формальной логики, сами по себе свойства чисел не вызывали никаких сомнений. Не возникало трудностей и с применением евклидовой геометрии, хотя она и утратила ореол непогрешимости: безотказное служение человечеству на протяжении двух тысячелетий вселяло уверенность в те ее положения, которые не удавалось обосновать с помощью логики. Однако математический анализ был постоянной мишенью для критики. В этом обширном разделе математики встречались нестрогие доказательства, парадоксы и даже противоречия. К тому же многие результаты не были подкреплены даже практически.

В начале XIX в. проблема строгого обоснования математического анализа привлекла внимание трех мыслителей: священника, философа и математика Бернарда Больцано, Нильса Хенрика Абеля и Огюстена Луи Коши. К сожалению, Больцано жил в Праге, и его работы долгие годы оставались неизвестными. Абель умер в возрасте 27 лет и не успел продвинуться в обосновании анализа сколько-нибудь существенно. Коши работал в Париже, столице математического мира того времени, и к 20-м годам XIX в. имел репутацию одного из величайших математиков мира. Именно поэтому его заслуги в движении за обоснование математики получили наибольшее признание, именно поэтому он оказал наибольшее влияние на своих современников.

Коши решил построить обоснование математического анализа на понятии числа. Почему именно это понятие привлекло его внимание? Англичане, следуя Ньютону, пытались обосновать математический анализ, используя геометрию, — и потерпели неудачу. Коши понимал, что геометрия не может служить основой математического анализа. К тому же математики континентальной Европы, следуя Лейбницу, всегда использовали аналитические методы. Кроме того, хотя к 20-м годам XIX в. работы по неевклидовой геометрии не получили еще широкой известности, математики, по-видимому, были достаточно наслышаны о них, что побуждало их относиться к геометрии с некоторым недоверием. С другой стороны, в царстве чисел математики чувствовали себя достаточно уверенно вплоть до 1843 г., когда Гамильтон создал свои кватернионы; впрочем, даже это знаменательное событие первоначально не вызвало ни малейшего сомнения в том, что с вещественными числами все обстоит благополучно.

Коши поступил весьма мудро, решив построить математический анализ на понятии предела. Как это неоднократно случалось в истории математики, избранный Коши правильный подход уже предлагался ранее некоторыми проницательными умами. Еще в XVII в. Джон Валлис в «Арифметике бесконечно малых» (1655) и шотландский профессор Джеймс Грегори в «Истинной квадратуре окружности и гиперболы» (1667), а затем в XVIII в. Д'Аламбер со всей определенностью указали на понятие предела как на наиболее подходящую основу построения анализа.

{86} Особое значение имели взгляды Д'Аламбера, базировавшиеся на трудах Ньютона, Лейбница и Эйлера. Свое понимание предела Д'Аламбер отчетливо сформулировал в статье «Предел», написанной для «Энциклопедии» (1751-1765):

Говорят, что одна величина есть предел другой величины, если вторая величина может приблизиться к первой настолько, что будет отличаться от нее меньше чем на любую заранее заданную сколь угодно малую величину, хотя величина, которая стремится к другой величине, никогда не может превзойти ее…{87}

Теория пределов составляет основу истинной метафизики дифференциального исчисления.

Перейти на страницу:

Похожие книги