Читаем Математика. Утрата определенности. полностью

К 1861 г. Вейерштрасс отчетливо понимал, что вопреки широко распространенному убеждению (гл. VII) дифференцируемость отнюдь не следует из непрерывности. Мир был потрясен, когда в 1872 г. Вейерштрасс представил Берлинской академии пример функции, непрерывной при всех вещественных x, но не дифференцируемой ни при одном значении x. (Он сам не опубликовал свой пример; это было сделано, разумеется со ссылкой на Вейерштрасса, Полем Дюбуа-Реймоном в 1875 г. Ранее Вейерштрасса примеры непрерывной, но нигде не дифференцируемой функции были с помощью геометрических соображений построены Больцано в 1830 г. и Шарлем Селирье примерно в то же время, но второй из этих примеров был опубликован лишь в 1890 г., а первый — еще позже; в силу этого Больцано и Селирье не оказали влияния на развитие математики.)

То обстоятельство, что Вейерштрасс привел свой пример на позднем этапе развития математического анализа, следует расценивать как удачу, ибо, как сказал в 1905 г. Эмиль Пикар, «если бы Ньютон и Лейбниц знали, что непрерывные функции необязательно должны иметь производные, то дифференциальное исчисление никогда не было бы создано». Строгое мышление может стать препятствием для творческого начала.

Коши и даже Вейерштрасс — в начале своей деятельности по обоснованию математического анализа — рассматривали все свойства вещественных и комплексных чисел как нечто данное, не нуждающееся в обосновании. Первый шаг к логическому обоснованию вещественных и комплексных чисел был сделан в 1837 г. создателем кватернионов Гамильтоном. Гамильтон знал, что комплексные числа можно использовать для представления векторов на плоскости, и пытался найти (гл. IV) числа с тремя единицами, которые могли бы служить представлением векторов в пространстве. Гамильтон стал изучать свойства комплексных чисел с тем, чтобы обобщить их. Одним из результатов, изложенных в его работе «Алгебраические пары, с предварительным очерком о времени», было логическое обоснование комплексных чисел, при построении которого Гамильтон, однако, считал свойства вещественных чисел общеизвестными. Вместо комплексных чисел a + b√−1 Гамильтон ввел упорядоченные пары (a, b) вещественных чисел и определил операции над этими парами так, чтобы результаты совпадали с результатами операций, производимых над комплексными числами a + b√−1.{91}

Следует заметить, что Гамильтону пришлось создавать новую теорию комплексных чисел, поскольку для него, как и для всех его предшественников, были неприемлемы не только символ √−1, но до какого-то времени и отрицательные числа. Позднее в одной из своих работ Гамильтон писал:

Настоящая теория пар опубликована, дабы продемонстрировать скрытый смысл [комплексных чисел] и показать на этом примечательном примере, что выражения, которые все считали чисто символическими и не допускавшими интерпретации, входят в мир идей, обретая реальность и значимость,

Далее в той же статье говорится следующее:

В теории отдельных чисел символ √−1 лишен всякого смысла [курсив Гамильтона] и означает невозможное извлечение корня, или мнимое число, но в теории пар тот же символ √−1

обретает смысл и означает возможное извлечение корня, или вещественную пару, а именно (как мы только что убедились) главное значение квадратного корня из пары (−1, 0). Следовательно, знак √−1 может быть надлежащим образом использован во второй теории, но отнюдь не в первой, и мы можем, если угодно, написать для любой пары (a1, a2)

(a1

, a2) = a1 + a2√−1

…и интерпретировать символ √−1 в том же выражении как обозначающий вторую единицу, или чисто вторичную пару (0, 1).

Так Гамильтон убрал то, что он назвал «метафизическими камнями преткновения» в системе комплексных чисел.

Перейти на страницу:

Похожие книги