В конце XIX в. была решена еще одна выдающаяся проблема. На протяжении 60 лет — с того времени, когда Гаусс выразил уверенность в непротиворечивости построенной им неевклидовой геометрии, вероятно, считая, что она может явиться геометрией реальной Вселенной, и вплоть до начала 70-х годов XIX в., когда были опубликованы работы Гаусса по неевклидовой геометрии и (впоследствии прославленная, а первоначально не оцененная) пробная лекция Римана на получение звания приват-доцента, — большинство математиков не принимали неевклидову геометрию всерьез (гл. IV). Выводы, напрашивающиеся из самого существования неевлидовой геометрии, настолько пугали своей непривычностью, что ученые предпочитали не задумываться над ними. У математиков все еще теплилась надежда, что в один прекрасный день в каждой из нескольких предложенных неевклидовых геометрий вскроются противоречия и эти странные творения человеческой фантазии можно будет предать забвению как бессмысленные.
К счастью, вопрос о непротиворечивости элементарных неевклидовых геометрий наконец удалось разрешить. Метод, которым была решена эта проблема, заслуживает — особенно в свете последующих событий — того, чтобы познакомиться с ним подробнее. Одна из неевклидовых геометрий — так называемая удвоенная эллиптическая геометрия, идея которой содержалась в лекции Римана 1854 г., — существенно отличается от евклидовой геометрии. В этой геометрии нет параллельных; любые две прямые пересекаются в двух точках; сумма внутренних углов треугольника больше 180°. Многие другие ее теоремы также отличаются от своих евклидовых аналогов. В 1868 г. Эудженио Бельтрами (1835-1900) обнаружил, что удвоенная эллиптическая геометрия плоскости применима к поверхности сферы, если прямые в удвоенной эллиптической геометрии интерпретировать как большие окружности на сфере (окружности, центры которых совпадают с центром сферы, например окружности, образуемые меридианами).
Может показаться, что предложенная Бельтрами интерпретация удвоенной эллиптической геометрии неприемлема. Создатели всех неевклидовых геометрий показали, что в их геометриях прямые ничем не отличаются от евклидовых прямых. Напомним, однако, что предложенные Евклидом определения прямой и других понятий (гл. V) были излишними. В любой области математики, как подчеркивал Аристотель, мы должны начинать наши построения с неопределяемых понятий. От прямых требуется лишь, чтобы они удовлетворяли аксиомам. Но большие окружности на сфере удовлетворяют всем аксиомам удвоенной эллиптической геометрии. А поскольку аксиомы удвоенной эллиптической геометрии применимы к большим окружностям на сфере, к этим окружностям должны быть применимы и теоремы удвоенной эллиптической геометрии, так как они логически вытекают из аксиом.
Если исходить из интерпретации прямой как большой окружности, то непротиворечивость удвоенной эллиптической геометрии устанавливается следующим образом. Если бы в удвоенной эллиптической геометрии существовали противоречивые теоремы, то должны были бы существовать противоречивые теоремы и в
Доказать непротиворечивость гиперболической геометрии (гл. IV) оказалось не так просто. Но как непротиворечивость удвоенной эллиптической геометрии удалось доказать на модели — сферической поверхности, так и непротиворечивость гиперболической геометрии была доказана на модели — несколько более сложной поверхности трехмерного евклидова пространства, изучаемой в (евклидовой!) дифференциальной геометрии. Нам нет необходимости описывать эту модель (см., например, [48]). Заметим лишь, что непротиворечивость гиперболической геометрии означает помимо прочего независимость аксиомы Евклида о параллельных от остальных аксиом евклидовой геометрии. Действительно, если бы аксиома Евклида о параллельных не была независима от остальных аксиом евклидовой геометрии, т.е. если бы ее можно было вывести из них, то она была бы теоремой
гиперболической геометрии, так как, за исключением аксиомы о параллельных, все остальные аксиомы гиперболической геометрии совпадают с аксиомами евклидовой геометрии. Но эта евклидова «теорема» противоречила бы аксиоме о параллельных гиперболической геометрии и гиперболическая геометрия была бы противоречивой. Следовательно, полуторавековые попытки вывести аксиому Евклида о параллельных (пятый постулат Евклида) из других аксиом евклидовой геометрии были заранее обречены на провал.