Неевклидовы геометрии, задуманные как «геометрии реального пространства», где прямая имеет тот же смысл (тот же вид, то же строение), что и в евклидовой геометрии, оказались применимыми к фигурам, совершенно отличным от тех, которые имели в виду создатели неевклидовых геометрий, и это важное обстоятельство имело серьезные последствия: неевклидовы геометрии получили совершенно различные интерпретации, ибо (как мы уже неоднократно отмечали) в любой аксиоматике должны быть неопределяемые понятия, которым в принципе можно придать какой угодно смысл — только бы удовлетворялись определяющие эти понятия аксиомы. Интерпретации неевклидовых геометрий получили название моделей. Таким образом, физический смысл той или иной математической теории оказался необязательным: одна и та же теория могла применяться к совершенно различным физическим или математическим ситуациям.
Непротиворечивость неевклидовых геометрий была доказана в предположении, что евклидова геометрия непротиворечива. У математиков 70-80-х годов прошлого века непротиворечивость евклидовой геометрии сомнений не вызывала. Несмотря на работы Гаусса, Лобачевского, Бойаи и Римана, евклидову геометрию продолжали считать естественной и непременной геометрией реального мира, а сама мысль о том, что геометрия реального мира может быть внутренне противоречивой, казалась нелепой. Тем не менее непротиворечивость евклидовой геометрии не была доказана логически.
Многие математики, относившиеся к неевклидовой геометрии почти презрительно, с удовлетворением восприняли доказательства непротиворечивости ее различных вариантов совсем по другой причине: дело в том, что хотя неевклидовы геометрии обретали смысл, но, как следовало из приведенных доказательств, лишь как модели, которые строились в рамках евклидовой геометрии. Это позволяло принять их как геометрии, реализуемые на тех или иных поверхностях, а не как геометрии, применимые к физическому миру, где прямые понимались в обычном смысле. Разумеется, подобный подход полностью противоречил взглядам Гаусса, Лобачевского и Римана (а в несколько ином смысле — и Бойаи).
Нерешенной оставалась лишь одна фундаментальная проблема, связанная с наведением строгости в математике: в основаниях евклидовой геометрии обнаружились изъяны. Однако в отличие от математического анализа природа геометрии и ее понятий была ясна. Установить неопределяемые термины, уточнить определения, восполнить недостающие аксиомы и завершить доказательства было сравнительно простой задачей. Она была решена независимо Морицем Пашем (1843-1930), Джузеппе Веронезе (1854-1917) и Марио Пиери (1860-1904). Давид Гильберт (1862-1943), по достоинству оценивший вклад Паша, предложил свой вариант аксиоматического построения евклидовой геометрии, который наиболее широко используется в наши дни. На едином дыхании он заложил основания неевклидовой геометрии Ламберта, Гаусса, Лобачевского и Бойаи, а также других геометрий, созданных в XIX в., главным образом проективной геометрии.{93}
Так, к началу XX в. математическая строгость восторжествовала в арифметике, алгебре, математическом анализе (начала которого базировались на аксиомах для целых чисел) и геометрии (на основе аксиом для точек, прямых и других геометрических объектов). Многих математиков соблазняла возможность пойти еще дальше и достроить на понятии числа всю геометрию — план, осуществимый с помощью аналитической геометрии. Сама геометрия как таковая по-прежнему не вызывала у них доверия. У математиков еще не изгладился из памяти один из уроков, преподанных им неевклидовой геометрией, которая выявила серьезные изъяны в евклидовой геометрии, считавшейся до сих пор образцом математической строгости. Однако к началу XX в. программа сведения всей геометрии к числу не была выполнена. Тем не менее большинство математиков того времени говорили об арифметизации геометрии, хотя правильнее было бы говорить об арифметизации математического анализа. Так, на II Международном конгрессе математиков, состоявшемся В 1900 г. в Париже, Пуанкаре утверждал: «На сегодняшний день в математическом анализе остались только целые числа, а также конечные и бесконечные системы целых чисел, связанных между собой системой отношений равенства или неравенства. Математика, можно сказать, арифметизована». Паскалю принадлежит следующее высказывание: «Tout ce qui passe la Géométrie nous passe» (все, что выходит за рамки Геометрии, выходит за рамки нашего понимания). В начале XX в. математики предпочитали говорить иначе: «Tout ce qui passe l'Arithmétique nous passe» (все, что выходит за рамки Арифметики, выходит за рамки нашего понимания).
Движения, первоначально ставившие перед собой довольно ограниченные цели, по мере своего разрастания нередко начинают охватывать гораздо более широкий круг проблем, чем ранее предполагалось. Критическое движение в области оснований математики со временем сделало мишенью своих атак и логику — законы мышления, используемые в математических доказательствах при переходе от одного заключения к другому.