Чаще всего в качестве подходящего примера чистые математики ссылаются на греческие работы о конических сечениях:
параболе, эллипсе и гиперболе. По мнению чистых — математиков, эти кривые были исследованы греками, в первую очередь Аполлонием, ради удовлетворения чисто математического интереса. Тем не менее восемнадцать столетий спустя Кеплер доказал, что именно по коническим сечениям движутся вокруг Солнца планеты. Однако хотя ранняя история конических сечений доподлинно и неизвестна, но все же по свидетельству такого авторитетного историка, как Отто Нейгебауэр (р. 1899), параболы, эллипсы и гиперболы впервые возникли в работах, посвященных конструкции солнечных часов. Известно, что древние действительно использовали в солнечных часах эти кривые. Задолго до того, как Аполлоний посвятил коническим сечениям свой классический труд (гл. I), было известно, что параболы позволяют фокусировать падающий на них солнечный свет. Следовательно, физические приложения конических сечений в оптике — области науки, которой греки уделяли немало внимания, — несомненно, послужили толчком к некоторым из исследований по геометрии конических сечений.Коническими сечениями греки занимались задолго до Аполлония в связи с решением знаменитой задачи об удвоении куба — построении ребра куба вдвое большего объема, чем данный куб. Для греческой геометрии, в которой единственный способ доказать существование того или иного объекта сводился к его построению, такого рода задачи имели первостепенное значение.
Разумеется, Аполлоний доказал сотни теорем о конических сечениях, не имеющих не только непосредственных приложений, но даже потенциально неприменимых. В этом отношении он мало чем отличался от современных математиков, которые, напав на благодатную тему, начинают разрабатывать ее либо по причинам, о которых говорилось выше, — из желания побольше узнать о чем-то важном либо из стремления ответить, так сказать, на интеллектуальный вызов.
Второй, наиболее часто приводимый пример чистой математики, впоследствии нашедшей, однако, немаловажные приложения, — неевклидова геометрия.
По словам тех, кто ссылается на этот пример, получается, будто математики создали неевклидову геометрию, размышляя на досуге над тем, что произойдет, если изменить евклидову аксиому о параллельных. Но утверждать подобное — значит игнорировать более чем двухтысячелетнюю историю науки. Аксиомы Евклида считались самоочевидными истинами о реальном физическом пространстве (гл. I). Аксиома о параллельных, весьма произвольно и своеобразно сформулированная Евклидом, стремившимся избежать исходного предположения о существовании параллельной, по сравнению с остальными аксиомами была куда как менее очевидной. Многие усилия, затраченные на поиск более приемлемого варианта аксиомы, привели в конце концов к открытию: аксиома о параллельных не обязательно должна быть истинной — другая аксиома о параллельных, отличающаяся от евклидовой (и, следовательно, неевклидова геометрия), может так же хорошо описывать физическое пространство. Итак, подчеркнем главное: попытки доказать истинность аксиомы Евклида о параллельных предпринимались не для «услаждения мозгов, поднаторевших в умозрительных рассуждениях», а для того, чтобы удостовериться в истинности геометрии, лежащей в основе тысяч и тысяч теорем чистой и прикладной математики.