Кроме того, теория групп была вызвана к жизни не только работами Галуа. Возможно, от внимания чистых математиков ускользнула работа французского кристаллографа Огюста Браве (1811-1863) по структуре кристаллов типа кварца, алмаза и горного хрусталя. Эти вещества состоят из различных атомов, расположенных по определенной схеме, многократно повторяющейся в объеме кристалла. Атомы в кристаллах таких веществ, как поваренная соль и обычные минералы, расположены особым образом. В простейшем случае (поваренной соли) можно считать, что соседние атомы расположены в вершинах куба. С 1848 г. Браве занялся изучением преобразований (поворотов кристалла вокруг какой-либо оси), трансляций (параллельных переносов, или сдвигов) или отражений, переводящих кристалл в себя. Такие преобразования образуют различные группы. Камил Жордан (1833-1922), обративший внимание на работу Браве, дополнил и обобщил ее в своей работе 1868 г. и в своем труде «Трактат о подстановках» (
Работа Браве навела Жордана на мысль об изучении бесконечных
групп — групп вращений и параллельных переносов. БесконечныеК аналогичному выводу приводит изучение и всех других понятий и теорий, якобы являющихся продуктом чистой математики: матриц тензорного исчисления, топологии. Например, вся современная алгебра обязана своим происхождением кватернионам Гамильтона (гл. IV). Мотивы создания абстрактной алгебры прямо или косвенно были связаны с физическими соображениями, и ее творцы неусыпно заботились о приложениях, которые могут иметь вводимые ими понятия. Следовательно, история неоспоримо свидетельствует, что любая математическая дисциплина, намеренно создаваемая как область чистой математики и лишь впоследствии нашедшая различные применения, как правило, возникала при исследовании реальных физических проблем или проблем, имеющих непосредственное отношение к изучению природы. Часто случается, что «хорошая математика», создание которой первоначально было стимулирование потребностями физики, находит новые приложения, которых не предвидели творцы теории. Так математика возвращает свой долг естествознанию. Новых, непредвиденных приложений следует ожидать заранее. Не удивляемся же мы, что молотком, который был изобретен для того, чтобы крушить горные породы, можно также и забивать гвозди. Неожиданные естественнонаучные приложения математики возникают по той простой причине, что математические теории с самого начала имеют физическую подоплеку а отнюдь не обязаны своим происхождением пророческому прозрению всеведущих математиков, сражающихся разве лишь с собственным духом. Неизменный успех абстрактных математических теорий отнюдь не случаен.
Рассказывают, что один из выдающихся английских математиков — Годфри Гарольд Харди (1877-1947) — однажды провозгласил тост: «За чистую математику! Да не найдет она никаких приложений!».{160}
Леонард Юджин Диксон (1874-1954), пользовавшийся непререкаемым авторитетом в Чикагском университете, говаривал: «Слава богу, теория чисел не запятнана никакими приложениями».В статье о математике, написанной во время второй мировой войны (1940), Харди утверждал: