Чистые математики нередко ссылаются также на работы Римана, который обобщил известную в его время неевклидову геометрию и указал на существование целого семейства неевклидовых геометрий, получивших впоследствии название римановых геометрий
(или геометрий римановых пространств). И в этом случае чистые математики полагают, будто Риман создал свои геометрии лишь с той целью, чтобы «посмотреть, что можно сделать». Думающие так глубоко заблуждаются. Как мы уже говорили, усилия математиков, направленные на устранение малейших сомнений в адекватности евклидовой геометрии окружающему нас миру, увенчались созданием неевклидовой геометрии, оказавшейся столь же пригодной для описания свойств физического пространства, как и евклидова геометрия. Существование двух различных геометрий заставило математиков задуматься над вопросом о том, что, собственно, нам достоверно известно о физическом пространстве? Этот вопрос послужил для Римана отправным пунктом для размышлений. Отвечая на него, Риман в своей лекции [106] 1854 г., которая была опубликована лишь после его смерти, развил общую теорию, включающую классическую геометрию Евклида и неевклидову геометрию Лобачевского — Бойаи в качестве частных случаев. Вследствие ограниченности наших физических знаний римановы геометрии могли оказаться столь же полезными для описания физического пространства, как и евклидова геометрия. Риман предвидел, что пространство и материю нужно рассматривать в неразрывной связи.{157} Следует ли удивляться после этого, что Эйнштейн счел риманову геометрию полезной? Предвидение Римана относительно физичности предложенной им геометрии отнюдь не умаляет остроумного применения, которое нашел римановой геометрии Эйнштейн. Применимость римановой геометрии явилась следствием работы над решением наиболее фундаментальной из физических проблем, которыми когда-либо занимались математики, — выяснением природы физического пространства.Нельзя не упомянуть еще об одном примере. Одно из интенсивно развивающихся направлений современной математики — теория групп.
По мнению чистых математиков, теория групп также была создана «из любви к искусству». Понятие группы ввел в математику Эварист Галуа (1811-1832), хотя неявно оно встречалось в работах Лагранжа, норвежца Абеля и итальянца Паоло Руффини (1765-1822). Внимание Галуа привлекла по существу самая простая и практически важная задача всей математики — разрешимость простых алгебраических уравнений, таких, как квадратное уравнение3x
2 + 5x + 7 = 0,кубическое уравнение
4x
3 + 6x2 − 5x + 9 = 0и уравнения более высоких степеней. Уравнения такого типа встречаются в тысячах физических задач. К тому времени, когда эта задача привлекла внимание Галуа, математики научились решать в радикалах общие алгебраические уравнения от первой до четвертой степени (т.е. выражать корни таких уравнений через их коэффициенты с помощью конечного числа алгебраических операций), а Нильс Хенрик Абель (1802-1829) доказал неразрешимость в радикалах общего алгебраического уравнения пятой степени
ax
5 + bx4 + cx3 + dx2 + ex + f = 0,где a, b, c, d, e
и f — любые вещественные (или комплексные) числа, а также и уравнений более высоких степеней. Галуа задался целью выяснить, почему общие уравнения пятой и выше степени неразрешимы в радикалах и почему частные уравнения сколь угодно высокой степени могут оказаться разрешимыми. Решая эту задачу, Галуа создал теорию групп. Нужно ли удивляться, что понятие, возникшее из решения столь фундаментальной проблемы, как решение алгебраических уравнений, оказалось применимым ко многим другим математическим и физическим задачам? Можно с уверенностью сказать, что теория групп не была «придумана», а родилась на прочной и вполне реальной физико-математической основе.